分割
计算机科学
人工智能
软件
任务(项目管理)
图像分割
深度学习
市场细分
计算机视觉
显微镜
图像处理
图像(数学)
模式识别(心理学)
光学
物理
业务
管理
营销
经济
程序设计语言
作者
Juan C. Caicedo,Allen Goodman,Kyle W. Karhohs,Beth A. Cimini,Jeanelle Ackerman,Marzieh Haghighi,Cher-Keng Heng,Tim Becker,Minh Doan,Claire McQuin,Mohammad Hossein Rohban,Shantanu Singh,Anne E. Carpenter
出处
期刊:Nature Methods
[Nature Portfolio]
日期:2019-10-21
卷期号:16 (12): 1247-1253
被引量:665
标识
DOI:10.1038/s41592-019-0612-7
摘要
Abstract Segmenting the nuclei of cells in microscopy images is often the first step in the quantitative analysis of imaging data for biological and biomedical applications. Many bioimage analysis tools can segment nuclei in images but need to be selected and configured for every experiment. The 2018 Data Science Bowl attracted 3,891 teams worldwide to make the first attempt to build a segmentation method that could be applied to any two-dimensional light microscopy image of stained nuclei across experiments, with no human interaction. Top participants in the challenge succeeded in this task, developing deep-learning-based models that identified cell nuclei across many image types and experimental conditions without the need to manually adjust segmentation parameters. This represents an important step toward configuration-free bioimage analysis software tools.
科研通智能强力驱动
Strongly Powered by AbleSci AI