SERS-based sensor with a machine learning based effective feature extraction technique for fast detection of colistin-resistant Klebsiella pneumoniae

自编码 人工智能 支持向量机 模式识别(心理学) 粘菌素 肺炎克雷伯菌 主成分分析 分类器(UML) 判别式 计算机科学 深度学习 化学 抗生素 微生物学 生物 大肠杆菌 生物化学 基因
作者
Fatma Uysal Ciloglu,Mehmet Hora,Aycan Gündoğdu,Mehmet Kahraman,Mahmut Tokmakçı,Ömer Aydın
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1221: 340094-340094 被引量:30
标识
DOI:10.1016/j.aca.2022.340094
摘要

Colistin-resistant Klebsiella pneumoniae (ColR-Kp) causes high mortality rates since colistin is used as the last-line antibiotic against multi-drug resistant Gram-negative bacteria. To reduce infections and mortality rates caused by ColR-Kp fast and reliable detection techniques are vital. In this study, we used a label-free surface-enhanced Raman scattering (SERS)-based sensor with machine learning algorithms to discriminate colistin-resistant and susceptible strains of K. pneumoniae. A total of 16 K. pneumoniae strains were incubated in tryptic soy broth (TSB) for 4 h. Collected SERS spectra of ColR-Kp and colistin susceptible K. pneumoniae (ColS-Kp) have shown some spectral differences that hard to discriminate by the naked eye. To extract discriminative features from the dataset, autoencoder and principal component analysis (PCA) that extract features in a non-linear and linear manner, respectively were performed. Extracted features were fed into the support vector machine (SVM) classifier to discriminate K. pneumoniae strains. Classifier performance was evaluated by using features extracted by each feature extraction techniques. Classification results of SVM classifier with extracted features by an autoencoder (autoencoder-SVM) has shown better performance than SVM classifier with extracted features by PCA (PCA-SVM). The accuracy, sensitivity, specificity, and area under curve (AUC) value of the autoencoder-SVM model were found as 94%, 94.2%, 93.8%, and 0.98, respectively. Furthermore, the autoencoder-SVM model has demonstrated statistically significantly better classifier performance than PCA-SVM in terms of accuracy and AUC values. These results illustrate that non-linear features can be more discriminative than linear ones to determine SERS spectral data of antibiotic-resistant and susceptible bacteria. Our methodological approach enables rapid and high accuracy detection of ColR-Kp and ColS-Kp, suggesting that this can be a promising tool to limit colistin resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kanoz完成签到 ,获得积分10
刚刚
匀升完成签到,获得积分10
刚刚
eno完成签到,获得积分10
刚刚
情怀应助MM采纳,获得10
1秒前
平常天佑完成签到,获得积分10
1秒前
2秒前
2秒前
棠棠完成签到 ,获得积分10
3秒前
花花完成签到,获得积分10
3秒前
风的味道完成签到,获得积分10
3秒前
LW完成签到,获得积分10
3秒前
LJJ完成签到,获得积分10
3秒前
香蕉子骞完成签到 ,获得积分10
3秒前
周清素完成签到,获得积分10
4秒前
4秒前
青易完成签到,获得积分10
4秒前
尊敬的小土豆完成签到,获得积分10
4秒前
kingwill应助小王同志采纳,获得20
4秒前
5秒前
饿了就次爪爪完成签到 ,获得积分10
6秒前
6秒前
violet完成签到,获得积分10
7秒前
孤独的大灰狼完成签到 ,获得积分10
7秒前
格子完成签到,获得积分10
7秒前
科目三应助yw采纳,获得10
8秒前
熊猫侠发布了新的文献求助10
8秒前
巴乔完成签到,获得积分10
10秒前
VIP发布了新的文献求助10
11秒前
HuFan1201完成签到 ,获得积分10
11秒前
12秒前
阳光的日记本完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
嘻嘻完成签到,获得积分10
14秒前
Paris完成签到 ,获得积分10
15秒前
迟迟完成签到 ,获得积分10
15秒前
霸王龙完成签到,获得积分10
16秒前
gomm完成签到,获得积分10
16秒前
deer完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784903
求助须知:如何正确求助?哪些是违规求助? 3330232
关于积分的说明 10245019
捐赠科研通 3045573
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800646
科研通“疑难数据库(出版商)”最低求助积分说明 759577