SERS-based sensor with a machine learning based effective feature extraction technique for fast detection of colistin-resistant Klebsiella pneumoniae

自编码 人工智能 支持向量机 模式识别(心理学) 粘菌素 肺炎克雷伯菌 主成分分析 分类器(UML) 判别式 计算机科学 深度学习 化学 抗生素 微生物学 生物 大肠杆菌 生物化学 基因
作者
Fatma Uysal Ciloglu,Mehmet Hora,Aycan Gündoğdu,Mehmet Kahraman,Mahmut Tokmakçı,Ömer Aydın
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1221: 340094-340094 被引量:36
标识
DOI:10.1016/j.aca.2022.340094
摘要

Colistin-resistant Klebsiella pneumoniae (ColR-Kp) causes high mortality rates since colistin is used as the last-line antibiotic against multi-drug resistant Gram-negative bacteria. To reduce infections and mortality rates caused by ColR-Kp fast and reliable detection techniques are vital. In this study, we used a label-free surface-enhanced Raman scattering (SERS)-based sensor with machine learning algorithms to discriminate colistin-resistant and susceptible strains of K. pneumoniae. A total of 16 K. pneumoniae strains were incubated in tryptic soy broth (TSB) for 4 h. Collected SERS spectra of ColR-Kp and colistin susceptible K. pneumoniae (ColS-Kp) have shown some spectral differences that hard to discriminate by the naked eye. To extract discriminative features from the dataset, autoencoder and principal component analysis (PCA) that extract features in a non-linear and linear manner, respectively were performed. Extracted features were fed into the support vector machine (SVM) classifier to discriminate K. pneumoniae strains. Classifier performance was evaluated by using features extracted by each feature extraction techniques. Classification results of SVM classifier with extracted features by an autoencoder (autoencoder-SVM) has shown better performance than SVM classifier with extracted features by PCA (PCA-SVM). The accuracy, sensitivity, specificity, and area under curve (AUC) value of the autoencoder-SVM model were found as 94%, 94.2%, 93.8%, and 0.98, respectively. Furthermore, the autoencoder-SVM model has demonstrated statistically significantly better classifier performance than PCA-SVM in terms of accuracy and AUC values. These results illustrate that non-linear features can be more discriminative than linear ones to determine SERS spectral data of antibiotic-resistant and susceptible bacteria. Our methodological approach enables rapid and high accuracy detection of ColR-Kp and ColS-Kp, suggesting that this can be a promising tool to limit colistin resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Agoni完成签到 ,获得积分20
刚刚
1秒前
song完成签到,获得积分10
1秒前
liuchengrui应助代沁采纳,获得10
1秒前
okkk完成签到,获得积分10
1秒前
机智飞荷发布了新的文献求助10
1秒前
huahuahua发布了新的文献求助10
2秒前
现实的从彤完成签到,获得积分10
2秒前
Arrow完成签到,获得积分10
2秒前
皮皮完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
帅气的鑫磊完成签到,获得积分10
3秒前
un完成签到,获得积分10
3秒前
小马甲应助123采纳,获得10
3秒前
慕青应助认真向彤采纳,获得10
3秒前
4秒前
4秒前
自信千儿完成签到,获得积分10
4秒前
dog发布了新的文献求助10
4秒前
marklee发布了新的文献求助10
4秒前
lululu发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
JamesPei应助踏实的丝采纳,获得10
5秒前
5秒前
5秒前
关畅澎发布了新的文献求助10
5秒前
华仔应助lzh1353730567采纳,获得10
5秒前
悠悠发布了新的文献求助30
6秒前
6秒前
李健应助HEIREN1采纳,获得10
6秒前
6秒前
楽龘完成签到,获得积分10
7秒前
zhonglv7应助花灯王子采纳,获得10
7秒前
7秒前
香蕉诗蕊给lzy的求助进行了留言
8秒前
机智飞荷完成签到,获得积分10
9秒前
暮色将至发布了新的文献求助10
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5701298
求助须知:如何正确求助?哪些是违规求助? 5143316
关于积分的说明 15233667
捐赠科研通 4856340
什么是DOI,文献DOI怎么找? 2605819
邀请新用户注册赠送积分活动 1557190
关于科研通互助平台的介绍 1515143