耿贝尔分布
估计员
无效假设
系列(地层学)
计量经济学
参数统计
条件方差
条件概率分布
统计假设检验
非线性系统
非参数统计
数学
条件期望
差异(会计)
统计
应用数学
计算机科学
经济
极值理论
ARCH模型
会计
波动性(金融)
古生物学
物理
量子力学
生物
作者
Shuo Li,Bin Guo,Yundong Tu
摘要
Abstract This paper proposes a simultaneous test for the specification of the conditional mean and conditional variance functions as well as the error distribution in nonlinear time series models. Constructed by comparing two density estimators for the response variable, the proposed test has a Gumbel‐limiting distribution under the null hypothesis and is consistent against a general class of alternative hypotheses. A parametric bootstrap procedure is proposed for practical implementation, and is shown to perform well in extensive simulations. The application to the continuous time diffusion model is illustrated via an analysis on the U.S. Federal fund rate data.
科研通智能强力驱动
Strongly Powered by AbleSci AI