A surrogate-based optimization method with RBF neural network enhanced by linear interpolation and hybrid infill strategy

替代模型 插值(计算机图形学) 径向基函数 数学优化 计算机科学 人工神经网络 趋同(经济学) 全局优化 线性插值 最优化问题 算法 数学 人工智能 模式识别(心理学) 运动(物理) 经济增长 经济
作者
Wen Yao,X. Q. Chen,Yiyong Huang,Michel van Tooren
出处
期刊:Optimization Methods & Software [Informa]
卷期号:29 (2): 406-429 被引量:46
标识
DOI:10.1080/10556788.2013.777722
摘要

In engineering, it is computationally prohibitive to directly employ costly models in optimization. Therefore, surrogate-based optimization is developed to replace the accurate models with cheap surrogates during optimization for efficiency. The two key issues of surrogate-based optimization are how to improve the surrogate accuracy by making the most of the available training samples, and how to sequentially augment the training set with certain infill strategy so as to gradually improve the surrogate accuracy and guarantee the convergence to the real global optimum of the accurate model. To address these two issues, a radial basis function neural network (RBFNN) based optimization method is proposed in this paper. First, a linear interpolation (LI) based RBFNN modelling method, LI-RBFNN, is developed, which can enhance the RBFNN accuracy by enforcing the gradient match between the surrogate and the trend observed from the training samples. Second, a hybrid infill strategy is proposed, which uses the surrogate prediction error based surrogate lower bound as the optimization objective to locate the promising region and meanwhile employs a linear interpolation-based sequential sampling approach to improve the surrogate accuracy globally. Finally, extensive tests are investigated and the effectiveness and efficiency of the proposed methods are demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安的浩宇完成签到,获得积分20
1秒前
2秒前
jj发布了新的文献求助10
2秒前
FashionBoy应助洁净亦巧采纳,获得10
3秒前
一切顺遂完成签到,获得积分20
3秒前
浙大波波完成签到 ,获得积分10
3秒前
时安发布了新的文献求助10
4秒前
起名太难了完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
7秒前
Jasper应助模拟八个字采纳,获得10
8秒前
shinan发布了新的文献求助10
8秒前
zhouyms完成签到,获得积分10
8秒前
9秒前
9秒前
小二郎应助Rong采纳,获得50
10秒前
10秒前
jingcheng完成签到,获得积分10
10秒前
10秒前
11秒前
烟花应助咸蛋超人采纳,获得10
11秒前
12秒前
12秒前
13秒前
无极微光应助买米当卡采纳,获得30
13秒前
英姑应助594778089采纳,获得10
13秒前
hejilianglove发布了新的文献求助10
13秒前
blackddl应助害羞的板凳采纳,获得10
13秒前
felix完成签到,获得积分20
14秒前
小点点cy_发布了新的文献求助10
14秒前
14秒前
凡凡发布了新的文献求助10
15秒前
英姑应助望山云雾采纳,获得10
15秒前
neuroQi应助pan采纳,获得30
16秒前
模拟八个字完成签到,获得积分10
16秒前
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521455
求助须知:如何正确求助?哪些是违规求助? 4612882
关于积分的说明 14535942
捐赠科研通 4550370
什么是DOI,文献DOI怎么找? 2493647
邀请新用户注册赠送积分活动 1474788
关于科研通互助平台的介绍 1446218