已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel belief rule base representation, generation and its inference methodology

计算机科学 模糊性 推理规则 前因(行为心理学) 知识库 模糊规则 基于规则的系统 推论 知识表示与推理 人工智能 基于知识的系统 信念结构 代表(政治) 基础(拓扑) 机器学习 模糊逻辑 数据挖掘 模糊集 数学 法学 发展心理学 数学分析 政治 心理学 政治学
作者
Jun Liu,Luis Martı́nez,Alberto Calzada,Hui Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:53: 129-141 被引量:128
标识
DOI:10.1016/j.knosys.2013.08.019
摘要

Advancement and application of rule-based systems have always been a key research area in computer-aided support for human decision making due to the fact that rule base is one of the most common frameworks for expressing various types of human knowledge in an intelligent system. In this paper, a novel rule-based representation scheme with a belief structure is proposed firstly along with its inference methodology. Such a rule base is designed with belief degrees embedded in the consequent terms as well as in the all antecedent terms of each rule, which is shown to be capable of capturing vagueness, incompleteness, uncertainty, and nonlinear causal relationships in an integrated way. The overall representation and inference framework offers a further improvement and great extension of the recently developed belief Rule base Inference Methodology (refer to as RIMER), although they still share a common scheme at the final step of inference, i.e., the evidential reasoning (ER) approach is applied to the rule combination. It is worth noting that this new extended belief rule base representation is a great extension of traditional rule base as well as fuzzy rule base by encompassing the uncertainty description in the rule antecedent and consequent. Subsequently, a simple but efficient and powerful method for automatically generating such extended belief rule base from numerical data is proposed involving neither time-consuming iterative learning procedure nor complicated rule generation mechanisms but keeping the relatively good performance, which thanks to the new features of the extended rule base with belief structures. Then some case studies in oil pipeline leak detection and software defect detection are provided to illustrate the proposed new rule base representation, generation, and inference procedure as well as demonstrate its high performance and efficiency by comparing with some existing approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
不安青牛应助彼岸花开采纳,获得10
2秒前
EnJingYang完成签到,获得积分10
2秒前
3秒前
7秒前
9秒前
orixero应助xqwttt采纳,获得10
11秒前
11秒前
clevenot333发布了新的文献求助10
12秒前
xuzb完成签到,获得积分10
14秒前
19秒前
19秒前
传奇3应助Anesthesialy采纳,获得10
20秒前
药剂机智小仓鼠完成签到 ,获得积分10
20秒前
Owen应助婷蓝采纳,获得10
21秒前
99668完成签到,获得积分10
22秒前
Jasper应助lonely采纳,获得10
22秒前
英姑应助Julo采纳,获得10
28秒前
岂曰无衣完成签到 ,获得积分10
30秒前
坚定自信完成签到,获得积分10
32秒前
彭于晏应助沉淀采纳,获得10
36秒前
胧雨完成签到,获得积分20
38秒前
38秒前
KIORking发布了新的文献求助10
41秒前
Chosen_1完成签到,获得积分10
42秒前
43秒前
墨言无殇发布了新的文献求助20
46秒前
47秒前
KIORking完成签到,获得积分10
51秒前
NexusExplorer应助YuLu采纳,获得10
51秒前
早晚会疯完成签到 ,获得积分10
59秒前
干净的雪糕完成签到,获得积分10
1分钟前
顺鑫完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
豆芽发布了新的文献求助10
1分钟前
左丘世立发布了新的文献求助10
1分钟前
oddfunction发布了新的文献求助10
1分钟前
罗东浩发布了新的文献求助10
1分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4098344
求助须知:如何正确求助?哪些是违规求助? 3636085
关于积分的说明 11524783
捐赠科研通 3346179
什么是DOI,文献DOI怎么找? 1839054
邀请新用户注册赠送积分活动 906486
科研通“疑难数据库(出版商)”最低求助积分说明 823739