亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Intensive Care Unit Length of Stay After Acute Type A Aortic Dissection Surgery Using Machine Learning

医学 主动脉夹层 重症监护室 四分位间距 心脏外科 马凡氏综合征 内科学 心脏病学 外科 体外循环 主动脉
作者
Qiuying Chen,Bin Zhang,Jue Yang,Xiaokai Mo,Lu Zhang,Minmin Li,Zhuozhi Chen,Fang Jin,Fei Wang,Wenhui Huang,Ruixin Fan,Shuixing Zhang
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:8: 675431-675431 被引量:21
标识
DOI:10.3389/fcvm.2021.675431
摘要

Background: Patients with acute type A aortic dissection are usually transferred to the intensive care unit (ICU) after surgery. Prolonged ICU length of stay (ICU-LOS) is associated with higher level of care and higher mortality. We aimed to develop and validate machine learning models for predicting ICU-LOS after acute type A aortic dissection surgery. Methods: A total of 353 patients with acute type A aortic dissection transferred to ICU after surgery from September 2016 to August 2019 were included. The patients were randomly divided into the training dataset (70%) and the validation dataset (30%). Eighty-four preoperative and intraoperative factors were collected for each patient. ICU-LOS was divided into four intervals (<4, 4–7, 7–10, and >10 days) according to interquartile range. Kendall correlation coefficient was used to identify factors associated with ICU-LOS. Five classic classifiers, Naive Bayes, Linear Regression, Decision Tree, Random Forest, and Gradient Boosting Decision Tree, were developed to predict ICU-LOS. Area under the curve (AUC) was used to evaluate the models' performance. Results: The mean age of patients was 51.0 ± 10.9 years and 307 (87.0%) were males. Twelve predictors were identified for ICU-LOS, namely, D-dimer, serum creatinine, lactate dehydrogenase, cardiopulmonary bypass time, fasting blood glucose, white blood cell count, surgical time, aortic cross-clamping time, with Marfan's syndrome, without Marfan's syndrome, without aortic aneurysm, and platelet count. Random Forest yielded the highest performance, with an AUC of 0.991 (95% confidence interval [CI]: 0.978–1.000) and 0.837 (95% CI: 0.766–0.908) in the training and validation datasets, respectively. Conclusions: Machine learning has the potential to predict ICU-LOS for acute type A aortic dissection. This tool could improve the management of ICU resources and patient-throughput planning, and allow better communication with patients and their families.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coollz完成签到,获得积分10
6秒前
共享精神应助着急的耳机采纳,获得10
12秒前
17秒前
承序发布了新的文献求助10
23秒前
李春鸿完成签到,获得积分10
28秒前
30秒前
budingman发布了新的文献求助10
33秒前
33秒前
35秒前
承序完成签到,获得积分10
35秒前
李春鸿发布了新的文献求助10
36秒前
38秒前
Orange应助衷医课代表采纳,获得10
46秒前
短巷完成签到 ,获得积分0
56秒前
情怀应助wangdong采纳,获得10
59秒前
Akim应助doublenine18采纳,获得10
1分钟前
1分钟前
1分钟前
Pipi发布了新的文献求助10
1分钟前
LALA发布了新的文献求助10
1分钟前
八九寺完成签到,获得积分10
1分钟前
1分钟前
1分钟前
李爱国应助LALA采纳,获得10
1分钟前
Pipi发布了新的文献求助10
1分钟前
KSDalton完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
陈文学发布了新的文献求助10
1分钟前
Criminology34应助研友_LMBa6n采纳,获得10
1分钟前
共享精神应助饱满毒娘采纳,获得10
1分钟前
1分钟前
1分钟前
doublenine18发布了新的文献求助10
1分钟前
Ade107发布了新的文献求助10
1分钟前
科目三应助眼睛大的松鼠采纳,获得10
1分钟前
维奈克拉应助科研通管家采纳,获得10
1分钟前
1分钟前
Pipi发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639533
求助须知:如何正确求助?哪些是违规求助? 4748853
关于积分的说明 15006598
捐赠科研通 4797713
什么是DOI,文献DOI怎么找? 2563735
邀请新用户注册赠送积分活动 1522691
关于科研通互助平台的介绍 1482394