Forecasting of air quality in Delhi using principal component regression technique

空气质量指数 环境科学 微粒 空气污染 主成分分析 空气污染物标准 污染物 国家环境空气质量标准 污染 气象学 主成分回归 缩小尺度 大气科学 空气污染物 统计 地理 数学 降水 地质学 有机化学 化学 生物 生态学
作者
Anikender Kumar,Pramila Goyal
出处
期刊:Atmospheric Pollution Research [Elsevier BV]
卷期号:2 (4): 436-444 被引量:120
标识
DOI:10.5094/apr.2011.050
摘要

Over the past decade, an increasing interest has evolved by the public in the day–to–day air quality conditions to which they are exposed. Driven by the increasing awareness of the health aspects of air pollution exposure, especially by most sensitive sub–populations such as children and the elderly, short–term air pollution forecasts are being provided more and more by local authorities. The Air Quality Index (AQI) is a number used by governmental agencies to characterize the quality of the air at a given location. AQI is used for local and regional air quality management in many metropolitan cities of the world. The main objective of the present study is to forecast short–term daily AQI through previous day’s AQI and meteorological variables using principal component regression (PCR) technique. This study has been made for four different seasons namely summer, monsoon, post monsoon and winter. AQI was estimated for the period of seven years from 2000–2006 at ITO (a busiest traffic intersection) for criteria pollutants such as respirable suspended particulate matter (RSPM), sulfur dioxide (SO2), nitrogen dioxide (NO2) and suspended particulate matter (SPM) using a method of US Environmental Protection Agency (USEPA), in which sub–index and breakpoint pollutant concentration depends on Indian National Ambient Air Quality Standard (NAAQS). The Principal components have been computed using covariance of input data matrix. Only those components, having eigenvalues ≥ 1, were used to predict the AQI using principal component regression technique. The performance of PCR model, used for forecasting of AQI, was better in winter than the other seasons as studied through statistical error analysis. The values of normalized mean square error (NMSE) were found as 0.0058, 0.0082, 0.0241 and 0.0418 for winter, summer, post monsoon and monsoon respectively. The other statistical parameters are also supporting the same result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助10
刚刚
WalkToSky完成签到,获得积分10
刚刚
坚强怀绿完成签到,获得积分10
刚刚
刚刚
局外人完成签到,获得积分10
刚刚
草原狼完成签到,获得积分10
刚刚
1秒前
xiaowang完成签到,获得积分10
1秒前
YJL完成签到 ,获得积分10
1秒前
摸鱼鱼完成签到,获得积分10
1秒前
William完成签到 ,获得积分10
2秒前
文静长颈鹿完成签到,获得积分10
2秒前
暖暖发布了新的文献求助10
2秒前
科研通AI5应助东方耀采纳,获得10
3秒前
meng完成签到,获得积分10
4秒前
4秒前
dfghjkl完成签到 ,获得积分10
6秒前
爱听歌依波完成签到 ,获得积分10
6秒前
bkagyin应助天色青青采纳,获得10
6秒前
深情安青应助杨冰采纳,获得10
6秒前
老徐完成签到,获得积分10
7秒前
gsji完成签到,获得积分10
7秒前
linkr5发布了新的文献求助10
8秒前
8秒前
时舒完成签到 ,获得积分10
9秒前
乐正亦寒完成签到 ,获得积分10
9秒前
传奇3应助暖暖采纳,获得10
10秒前
风吹草动玉米粒完成签到,获得积分10
10秒前
nieinei完成签到 ,获得积分10
10秒前
10秒前
xdd完成签到,获得积分10
11秒前
一棵草完成签到,获得积分10
11秒前
Srui完成签到,获得积分10
11秒前
12秒前
沉静野狼完成签到,获得积分10
12秒前
小二郎应助淡定白枫采纳,获得10
12秒前
13秒前
芝芝完成签到,获得积分10
13秒前
ZQJ完成签到,获得积分10
13秒前
bettersy完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784938
求助须知:如何正确求助?哪些是违规求助? 3330274
关于积分的说明 10245276
捐赠科研通 3045590
什么是DOI,文献DOI怎么找? 1671719
邀请新用户注册赠送积分活动 800686
科研通“疑难数据库(出版商)”最低求助积分说明 759609