Prediction of Postoperative Delirium in Geriatric Hip Fracture Patients: A Clinical Prediction Model Using Machine Learning Algorithms

谵妄 布里氏评分 医学 髋部骨折 机器学习 算法 随机森林 物理疗法 人工智能 重症监护医学 计算机科学 内科学 骨质疏松症
作者
Jacobien H. F. Oosterhoff,Aditya V. Karhade,Tarandeep Oberai,Esteban Franco‐Garcia,Job N. Doornberg,Joseph H. Schwab
出处
期刊:Geriatric Orthopaedic Surgery & Rehabilitation [SAGE Publishing]
卷期号:12 被引量:38
标识
DOI:10.1177/21514593211062277
摘要

Postoperative delirium in geriatric hip fracture patients adversely affects clinical and functional outcomes and increases costs. A preoperative prediction tool to identify high-risk patients may facilitate optimal use of preventive interventions. The purpose of this study was to develop a clinical prediction model using machine learning algorithms for preoperative prediction of postoperative delirium in geriatric hip fracture patients.Geriatric patients undergoing operative hip fracture fixation were queried in the American College of Surgeons National Surgical Quality Improvement Program database (ACS NSQIP) from 2016 through 2019. A total of 28 207 patients were included, of which 8030 (28.5%) developed a postoperative delirium. First, the dataset was randomly split 80:20 into a training and testing subset. Then, a random forest (RF) algorithm was used to identify the variables predictive for a postoperative delirium. The machine learning-model was developed on the training set and the performance was assessed in the testing set. Performance was assessed by discrimination (c-statistic), calibration (slope and intercept), overall performance (Brier-score), and decision curve analysis.The included variables identified using RF algorithms were (1) age, (2) ASA class, (3) functional status, (4) preoperative dementia, (5) preoperative delirium, and (6) preoperative need for mobility-aid. The clinical prediction model reached good discrimination (c-statistic = .79), almost perfect calibration (intercept = -.01, slope = 1.02), and excellent overall model performance (Brier score = .15). The clinical prediction model was deployed as an open-access web-application: https://sorg-apps.shinyapps.io/hipfxdelirium/.We developed a clinical prediction model that shows promise in estimating the risk of postoperative delirium in geriatric hip fracture patients. The clinical prediction model can play a beneficial role in decision-making for preventative measures for patients at risk of developing a delirium. If found to be externally valid, clinicians might use the available web-based application to help incorporate the model into clinical practice to aid decision-making and optimize preoperative prevention efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发疯可乐狗完成签到 ,获得积分10
1秒前
SciGPT应助专一的平卉采纳,获得10
4秒前
guan发布了新的文献求助10
5秒前
AAAAA应助周小鱼采纳,获得10
7秒前
rui完成签到 ,获得积分10
7秒前
8秒前
11秒前
勤奋完成签到,获得积分10
11秒前
XXHH发布了新的文献求助10
12秒前
奋斗藏花完成签到,获得积分10
14秒前
gyx发布了新的文献求助10
14秒前
科研通AI5应助星睿采纳,获得10
14秒前
15秒前
SciGPT应助totalMiss采纳,获得10
16秒前
bias完成签到,获得积分10
19秒前
Jasper应助嗯qq采纳,获得10
20秒前
23秒前
24秒前
25秒前
HH完成签到,获得积分10
26秒前
27秒前
27秒前
28秒前
星睿发布了新的文献求助10
28秒前
Sewerant完成签到 ,获得积分10
28秒前
coolru发布了新的文献求助10
29秒前
朱荧荧发布了新的文献求助10
30秒前
31秒前
嗯qq发布了新的文献求助10
32秒前
薛雨佳发布了新的文献求助10
32秒前
iNk应助wulin314采纳,获得10
33秒前
光亮天蓉发布了新的文献求助10
36秒前
彭于晏应助挺喜欢你采纳,获得10
39秒前
mandy发布了新的文献求助10
40秒前
43秒前
独特的清完成签到 ,获得积分10
43秒前
45秒前
科研通AI5应助感动苡采纳,获得10
46秒前
47秒前
天堂制造完成签到,获得积分10
47秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823579
求助须知:如何正确求助?哪些是违规求助? 3365991
关于积分的说明 10438472
捐赠科研通 3085147
什么是DOI,文献DOI怎么找? 1697192
邀请新用户注册赠送积分活动 816273
科研通“疑难数据库(出版商)”最低求助积分说明 769462