Addressing measurement issues in affect dynamic research: Modeling emotional inertia’s reliability to improve its predictive validity of depressive symptoms.

心理学 结构方程建模 可靠性(半导体) 心理信息 差异(会计) 经验抽样法 动力系数 惯性 验证性因素分析 临床心理学 统计 社会心理学 功率(物理) 数学 物理 会计 梅德林 经典力学 量子力学 政治学 法学 业务
作者
Mario Wenzel,Annette Brose
出处
期刊:Emotion [American Psychological Association]
卷期号:23 (2): 412-424 被引量:8
标识
DOI:10.1037/emo0001108
摘要

Methodical developments facilitated research on the time-dynamic nature of emotions, introducing novel emotion dynamic measures such as emotional inertia that initially showed significant associations with well-being outcomes like depressive symptoms. However, recent research has challenged this notion by demonstrating that negative emotion inertia's explanatory power in predicting depressive symptoms vanished once mean negative emotion was controlled for. Emotional inertia is often modeled by a two-step approach that first derives estimates of emotional inertia and then uses those to predict depressive symptoms. In the present research, we reanalyzed five experience sampling data sets (N = 875 participants) and demonstrate that this two-step approach leads to low reliability of negative emotion inertia, r¯sb = .52; thereby, attenuating its association with depressive symptoms, as reflected by only 1.3% added explained variance in depressive symptoms above mean negative emotion. As an alternative, we propose a novel one-step approach that adjusts for unreliability of inertia estimates: We introduce a latent inertia factor that is defined by the autocorrelation of various emotion items. Using dynamic structural equation models, this latent factor is simultaneously used to predict depressive symptoms. Here, negative emotion inertia showed good reliability, ω¯ = .81, and explained an additional 4.5% of the total variance in depressive symptoms. Thus, our results demonstrate that emotion dynamic measures can be an important feature of individual well-being if their lower reliability compared with mean negative emotion is modeled and corrected for in dynamic structural equation models. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ding应助nnn采纳,获得10
1秒前
Ava应助潇洒的夜云采纳,获得10
1秒前
CA发布了新的文献求助10
2秒前
zjy2023完成签到,获得积分10
2秒前
离子键完成签到,获得积分10
2秒前
maomaozi发布了新的文献求助10
2秒前
欢乐佩奇完成签到,获得积分10
3秒前
3秒前
科研通AI5应助ting采纳,获得30
5秒前
悦耳妙旋应助拉总采纳,获得10
5秒前
瘦瘦的铅笔完成签到 ,获得积分10
5秒前
CyberHamster完成签到,获得积分10
5秒前
SY发布了新的文献求助200
5秒前
6秒前
CipherSage应助花开四海采纳,获得10
8秒前
JamesPei应助maomaozi采纳,获得30
8秒前
inter完成签到,获得积分10
9秒前
YOGA完成签到,获得积分10
9秒前
9秒前
上官若男应助怪味痘采纳,获得10
9秒前
10秒前
CA完成签到,获得积分10
11秒前
LinYX完成签到,获得积分10
12秒前
12秒前
盛夏完成签到,获得积分10
12秒前
zyy完成签到,获得积分10
14秒前
ccc发布了新的文献求助20
15秒前
ahsisalah完成签到,获得积分10
15秒前
希望天下0贩的0应助熊二采纳,获得10
15秒前
16秒前
墨与笙完成签到,获得积分10
17秒前
Jasper应助A宇采纳,获得10
18秒前
maomaozi完成签到,获得积分20
19秒前
21秒前
guoguo发布了新的文献求助10
21秒前
sunidea完成签到,获得积分10
21秒前
桐桐应助lbc采纳,获得10
22秒前
22秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842227
求助须知:如何正确求助?哪些是违规求助? 3384315
关于积分的说明 10534047
捐赠科研通 3104710
什么是DOI,文献DOI怎么找? 1709789
邀请新用户注册赠送积分活动 823323
科研通“疑难数据库(出版商)”最低求助积分说明 774034