Modeling brain dynamic state changes with adaptive mixture independent component analysis

脑电图 独立成分分析 大脑活动与冥想 计算机科学 人工智能 模式识别(心理学) 语音识别 心理学 神经科学
作者
Sheng-Hsiou Hsu,Luca Pion-Tonachini,Jason Palmer,Makoto Miyakoshi,Scott Makeig,Tzyy‐Ping Jung
出处
期刊:NeuroImage [Elsevier]
卷期号:183: 47-61 被引量:91
标识
DOI:10.1016/j.neuroimage.2018.08.001
摘要

There is a growing interest in neuroscience in assessing the continuous, endogenous, and nonstationary dynamics of brain network activity supporting the fluidity of human cognition and behavior. This non-stationarity may involve ever-changing formation and dissolution of active cortical sources and brain networks. However, unsupervised approaches to identify and model these changes in brain dynamics as continuous transitions between quasi-stable brain states using unlabeled, noninvasive recordings of brain activity have been limited. This study explores the use of adaptive mixture independent component analysis (AMICA) to model multichannel electroencephalographic (EEG) data with a set of ICA models, each of which decomposes an adaptively learned portion of the data into statistically independent sources. We first show that AMICA can segment simulated quasi-stationary EEG data and accurately identify ground-truth sources and source model transitions. Next, we demonstrate that AMICA decomposition, applied to 6-13 channel scalp recordings from the CAP Sleep Database, can characterize sleep stage dynamics, allowing 75% accuracy in identifying transitions between six sleep stages without use of EEG power spectra. Finally, applied to 30-channel data from subjects in a driving simulator, AMICA identifies models that account for EEG during faster and slower response to driving challenges, respectively. We show changes in relative probabilities of these models allow effective prediction of subject response speed and moment-by-moment characterization of state changes within single trials. AMICA thus provides a generic unsupervised approach to identifying and modeling changes in EEG dynamics. Applied to continuous, unlabeled multichannel data, AMICA may likely be used to detect and study any changes in cognitive states.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Summer发布了新的文献求助10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
打打应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
秋石发布了新的文献求助10
刚刚
1秒前
浮游应助Nevermind采纳,获得10
1秒前
空气草发布了新的文献求助10
2秒前
Hello应助云泥花锦采纳,获得10
2秒前
桐桐应助songif采纳,获得10
2秒前
智商洼地完成签到,获得积分20
3秒前
3秒前
强公子完成签到,获得积分10
4秒前
4秒前
读书发布了新的文献求助10
4秒前
ddd关闭了ddd文献求助
4秒前
思源应助诚心的剑身采纳,获得10
5秒前
lucy发布了新的文献求助10
6秒前
6秒前
7秒前
浮游应助超帅的鹏飞采纳,获得10
7秒前
彭于晏应助王一一采纳,获得10
7秒前
shfsuf发布了新的文献求助10
7秒前
丘比特应助cssfsa采纳,获得10
8秒前
8秒前
yyyg完成签到,获得积分10
8秒前
NexusExplorer应助南与晚霞采纳,获得10
9秒前
科研通AI6应助未碎冰蓝采纳,获得10
10秒前
Summer完成签到 ,获得积分20
10秒前
胖玻璃球发布了新的文献求助10
10秒前
yyyg发布了新的文献求助30
11秒前
发粪涂墙完成签到,获得积分10
11秒前
champion完成签到,获得积分20
11秒前
玄叶发布了新的文献求助10
12秒前
12秒前
14秒前
李健应助shfsuf采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526777
求助须知:如何正确求助?哪些是违规求助? 4616768
关于积分的说明 14555797
捐赠科研通 4555282
什么是DOI,文献DOI怎么找? 2496282
邀请新用户注册赠送积分活动 1476561
关于科研通互助平台的介绍 1448126