Machine learning can predict disease manifestations and outcomes in lymphangioleiomyomatosis

淋巴管平滑肌瘤病 医学 前瞻性队列研究 星团(航天器) 队列 气胸 队列研究 内科学 外科 计算机科学 程序设计语言
作者
Saisakul Chernbumroong,JANICE H. JOHNSON,Nishant Gupta,S. Miller,Francis X. McCormack,Jonathan M. Garibaldi,Simon R. Johnson
出处
期刊:The European respiratory journal [European Respiratory Society]
卷期号:57 (6): 2003036-2003036 被引量:8
标识
DOI:10.1183/13993003.03036-2020
摘要

Background Lymphangioleiomyomatosis (LAM) is a rare multisystem disease with variable clinical manifestations and differing rates of progression that make management decisions and giving prognostic advice difficult. We used machine learning to identify clusters of associated features which could be used to stratify patients and predict outcomes in individuals. Patients and methods Using unsupervised machine learning we generated patient clusters using data from 173 women with LAM from the UK and 186 replication subjects from the US National Heart, Lung, and Blood Institute (NHLBI) LAM registry. Prospective outcomes were associated with cluster results. Results Two- and three-cluster models were developed. A three-cluster model separated a large group of subjects presenting with dyspnoea or pneumothorax from a second cluster with a high prevalence of angiomyolipoma symptoms (p=0.0001) and tuberous sclerosis complex (TSC) (p=0.041). Patients in the third cluster were older, never presented with dyspnoea or pneumothorax (p=0.0001) and had better lung function. Similar clusters were reproduced in the NHLBI cohort. Assigning patients to clusters predicted prospective outcomes: in a two-cluster model the future risk of pneumothorax was 3.3 (95% CI 1.7–5.6)-fold greater in cluster 1 than cluster 2 (p=0.0002). Using the three-cluster model, the need for intervention for angiomyolipoma was lower in clusters 2 and 3 than cluster 1 (p<0.00001). In the NHLBI cohort, the incidence of death or lung transplant was much lower in clusters 2 and 3 (p=0.0045). Conclusions Machine learning has identified clinically relevant clusters associated with complications and outcome. Assigning individuals to clusters could improve decision making and prognostic information for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
光亮傲珊完成签到,获得积分20
2秒前
3秒前
CC完成签到,获得积分10
3秒前
3秒前
土豆子完成签到,获得积分20
3秒前
在水一方应助诗诗采纳,获得10
4秒前
4秒前
4秒前
5秒前
6秒前
7秒前
FLOR发布了新的文献求助10
7秒前
7秒前
共享精神应助巴啦啦能量采纳,获得10
8秒前
清欢发布了新的文献求助10
9秒前
9秒前
9秒前
samantha完成签到,获得积分10
10秒前
舒适逊完成签到 ,获得积分10
11秒前
李健的粉丝团团长应助sxd采纳,获得10
13秒前
taotao发布了新的文献求助30
13秒前
14秒前
ANDRT发布了新的文献求助10
14秒前
14秒前
共享精神应助x星妍采纳,获得10
15秒前
15秒前
233完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
HDD完成签到,获得积分10
17秒前
滚滚发布了新的文献求助10
20秒前
20秒前
咕咕发布了新的文献求助10
20秒前
20秒前
今后应助核桃采纳,获得80
21秒前
FLOR完成签到,获得积分10
21秒前
Ava应助土豆酱采纳,获得10
21秒前
22秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807517
求助须知:如何正确求助?哪些是违规求助? 3352243
关于积分的说明 10358183
捐赠科研通 3068352
什么是DOI,文献DOI怎么找? 1684895
邀请新用户注册赠送积分活动 810113
科研通“疑难数据库(出版商)”最低求助积分说明 765859