SOSMaskFuse: An Infrared and Visible Image Fusion Architecture Based on Salient Object Segmentation Mask

人工智能 红外线的 计算机视觉 计算机科学 图像融合 分割 图像分割 融合 突出 模式识别(心理学) 图像(数学) 光学 物理 语言学 哲学
作者
Guofa Li,Xuanhu Qian,Xingda Qu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 10118-10137 被引量:12
标识
DOI:10.1109/tits.2023.3268063
摘要

High-quality fusion images with infrared and visible information contribute to intelligent and safe driving. In the infrared and visible fusion images, the useless noise information in infrared image makes the fusion image unclear, which leads to the loss of texture information from visible image. In order to solve this problem, we propose a novel two-stage network (i.e., SOSMaskFuse) that can effectively reduce the noise and extract the important thermal information in infrared images as well as display sufficient texture details of visible images. In the first stage of this network, a salient object segmentation (SOS) network is proposed. Infrared images are fed into the SOS network to obtain the corresponding binarization mask of the region of interest. In the second stage, in each layer of features extracted by the encoder network, the newly proposed IMV-F (infrared mask visible fusion) fusion strategy uses the mask to decompose both infrared and visible images into infrared-foreground, visible-foreground, infrared-background and visible-background, and then fuses the foreground and background parts separately into fused-foreground and fused-background. Finally, the decoder network reconstructs the fused features into the final fused image. Compared with eighteen competitive algorithms on three public datasets, the experimental results indicate that our proposed network can produce high quality fused images with clear background texture information while highlighting infrared thermal information. Our proposed SOSMaskFuse generally outperforms the eighteen compared methods from both the quantitative and qualitative perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qunli完成签到,获得积分10
刚刚
hahamissyu完成签到,获得积分10
刚刚
1秒前
细心亦丝发布了新的文献求助10
1秒前
xiaojin完成签到,获得积分10
2秒前
坦率的匪应助林花溪采纳,获得10
2秒前
CAOHOU应助林花溪采纳,获得10
2秒前
坦率的匪应助林花溪采纳,获得10
2秒前
沉淀完成签到 ,获得积分10
2秒前
香蕉觅云应助长毛小狮子采纳,获得10
3秒前
3秒前
sdl发布了新的文献求助10
3秒前
hellomoon发布了新的文献求助10
4秒前
YC发布了新的文献求助10
6秒前
7秒前
7秒前
llly完成签到,获得积分10
7秒前
vip668发布了新的文献求助10
7秒前
8秒前
Kryptonite完成签到,获得积分10
9秒前
透明木头块儿完成签到,获得积分10
9秒前
9秒前
传奇3应助iniyTtwte采纳,获得10
10秒前
10秒前
Andy应助doctor_loong采纳,获得30
10秒前
Amai发布了新的文献求助30
10秒前
慕青应助fish采纳,获得10
11秒前
情怀应助lerchier采纳,获得30
11秒前
YOGA完成签到,获得积分10
11秒前
粉鼻子发布了新的文献求助10
12秒前
wss完成签到,获得积分20
12秒前
木南完成签到 ,获得积分10
12秒前
vip668完成签到,获得积分10
12秒前
Grace159完成签到 ,获得积分10
12秒前
13秒前
13秒前
13秒前
Lucas应助lewisll采纳,获得10
13秒前
13秒前
13秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4100804
求助须知:如何正确求助?哪些是违规求助? 3638636
关于积分的说明 11530526
捐赠科研通 3347380
什么是DOI,文献DOI怎么找? 1839633
邀请新用户注册赠送积分活动 906869
科研通“疑难数据库(出版商)”最低求助积分说明 824095