Resampling-based cost loss attention network for explainable imbalanced diabetic retinopathy grading

计算机科学 人工智能 重采样 糖尿病性视网膜病变 模式识别(心理学) 分级(工程) 人工神经网络 生物识别 机器学习 医学 工程类 内分泌学 土木工程 糖尿病
作者
Haiyan Li,Xiaofang Dong,Wei Shen,Fuhua Ge,Hongsong Li
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:149: 105970-105970 被引量:10
标识
DOI:10.1016/j.compbiomed.2022.105970
摘要

Diabetic retinopathy (DR) is currently considered to be one of the most common diseases that cause blindness. However, DR grading methods are still challenged by the presence of imbalanced class distributions, small lesions, low accuracy of small sample classes and poor explainability. To address these issues, a resampling-based cost loss attention network for explainable imbalanced diabetic retinopathy grading is proposed. First, the progressively-balanced resampling strategy is put forward to create a balanced training data by mixing the two sets of samples obtained from instance-based sampling and class-based sampling. Subsequently, a neuron and normalized channel-spatial attention module (Neu-NCSAM) is designed to learn the global features with 3-D weights and a weight sparsity penalty is applied to the attention module to suppress irrelevant channels or pixels, thereby capturing detailed small lesion information. Thereafter, a weighted loss function of the Cost-Sensitive (CS) regularization and Gaussian label smoothing loss, called cost loss, is proposed to intelligently penalize the incorrect predictions and thus to improve the grading accuracy of small sample classes. Finally, the Gradient-weighted Class Activation Mapping (Grad-CAM) is performed to acquire the localization map of the questionable lesions in order to visually interpret and understand the effect of our model. Comprehensive experiments are carried out on two public datasets, and the subjective and objective results demonstrate that the proposed network outperforms the state-of-the-art methods and achieves the best DR grading results with 83.46%, 60.44%, 65.18%, 63.69% and 92.26% for Kappa, BACC, MCC, F1 and mAUC, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助小火车采纳,获得10
刚刚
娴Zqx发布了新的文献求助10
刚刚
未命名完成签到,获得积分10
1秒前
Min完成签到,获得积分10
2秒前
2秒前
北栀完成签到,获得积分10
2秒前
w王w完成签到,获得积分10
2秒前
旺旺发布了新的文献求助10
3秒前
King发布了新的文献求助10
3秒前
lexa发布了新的文献求助10
4秒前
4秒前
脑洞疼应助英勇凡采纳,获得10
5秒前
5秒前
小豆芽完成签到,获得积分20
5秒前
妙jdx发布了新的文献求助10
5秒前
OvOlive完成签到,获得积分10
5秒前
刘雨欣关注了科研通微信公众号
7秒前
彭于晏应助等等采纳,获得10
7秒前
木青仙子完成签到,获得积分10
7秒前
桃子发布了新的文献求助10
8秒前
bkagyin应助朴素碧灵采纳,获得10
8秒前
Jasper应助ljs采纳,获得10
9秒前
酷波er应助kzz312采纳,获得10
9秒前
lhcshuang完成签到,获得积分20
9秒前
Yang完成签到,获得积分10
9秒前
Lucas应助wangxiangqin采纳,获得10
10秒前
10秒前
12秒前
爆米花应助Shandongdaxiu采纳,获得10
12秒前
lhcshuang发布了新的文献求助10
12秒前
洋仔完成签到,获得积分10
13秒前
派兀派完成签到,获得积分10
13秒前
lexa完成签到,获得积分20
14秒前
14秒前
毛通完成签到,获得积分10
14秒前
雨123完成签到,获得积分10
14秒前
14秒前
15秒前
小二郎应助龙哥采纳,获得10
15秒前
梓歆发布了新的文献求助10
15秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
Canon of Insolation and the Ice-age Problem 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3911797
求助须知:如何正确求助?哪些是违规求助? 3457245
关于积分的说明 10894283
捐赠科研通 3183565
什么是DOI,文献DOI怎么找? 1759803
邀请新用户注册赠送积分活动 851073
科研通“疑难数据库(出版商)”最低求助积分说明 792461