T2V_TF: An adaptive timing encoding mechanism based Transformer with multi-source heterogeneous information fusion for portfolio management: A case of the Chinese A50 stocks

计算机科学 文件夹 变压器 股票市场 支持向量机 人工智能 库存(枪支) 机器学习 数据挖掘 财务 业务 机械工程 生物 物理 工程类 古生物学 电压 量子力学
作者
Feng Zhou,Qun Zhang,Yuan Zhu,Tian Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:213: 119020-119020 被引量:9
标识
DOI:10.1016/j.eswa.2022.119020
摘要

The Stock prediction has traditionally been an attractive and challenging topic for investors and researchers. Traditionally, people concern more about predicting stock prices, less effort has been made to recommend stocks for constructing a profitable portfolio. Moreover, in existing methods for stock prediction, most of them construct models based on one or two kinds of features like stock prices, news sentiment, or simple technical indicators, and disregard the importance of multi-source information fusion. In response to this concern, we propose a novel model T2V_TF based on deep learning by combining both Time2Vec and Transformer technologies. To introduce more diverse information into the proposed model, we further conduct an in-depth exploration of the extraction and fusion of multi-source heterogeneous information, which includes the trading data, time–frequency features, Alpha 101 and Alpha 191 technical indicators, and sentiment scores. Moreover, to increase the ranking ability of our model, T2V_TF takes the ranking loss as the loss function instead of the widely used regression loss. Finally, all the technological innovations of this paper are verified on the portfolio constructed based on the A50 stocks from the Chinese stock market. The experimental results demonstrate that our proposed T2V_TF can get better portfolio cumulative return, compared with other models including the multi-layer perceptron, the support vector machine, the gradient boosting decision trees, the long short-term memory model, and the attention-based long short-term memory model, and the Transformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HanQing发布了新的文献求助10
1秒前
1秒前
FashionBoy应助结实的冰真采纳,获得10
1秒前
赘婿应助TIAN采纳,获得10
1秒前
spiderTang完成签到 ,获得积分20
1秒前
1秒前
岁月轮回完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
czp完成签到,获得积分10
2秒前
善学以致用应助songf11采纳,获得30
2秒前
wanci应助Yan采纳,获得10
2秒前
xixi发布了新的文献求助10
3秒前
棕熊熊应助小龙采纳,获得10
3秒前
3秒前
岁月轮回发布了新的文献求助10
4秒前
木通完成签到,获得积分10
4秒前
小白发布了新的文献求助10
4秒前
aaaaaa发布了新的文献求助10
5秒前
每每反完成签到,获得积分10
5秒前
xpc发布了新的文献求助10
5秒前
爱听歌完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
HanQing完成签到,获得积分10
6秒前
成成程完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
fang发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI5应助12138采纳,获得10
8秒前
深情安青应助落后的元灵采纳,获得30
9秒前
Y123完成签到,获得积分10
9秒前
科研通AI5应助妖孽的二狗采纳,获得10
9秒前
9秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838094
求助须知:如何正确求助?哪些是违规求助? 3380365
关于积分的说明 10514040
捐赠科研通 3099948
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821577
科研通“疑难数据库(出版商)”最低求助积分说明 772772