Can lung ultrasound score accurately predict surfactant replacement? A systematic review and meta‐analysis of diagnostic test studies

医学 接收机工作特性 置信区间 荟萃分析 超声波 科克伦图书馆 诊断优势比 曲线下面积 优势比 诊断试验中的似然比 呼吸窘迫 内科学 放射科
作者
Letizia Capasso,Daniela Pacella,Fiorella Migliaro,Serena Salomè,Fiorentino Grasso,Iuri Corsini,Daniele De Luca,Peter G Davis,Francesco Raimondi
出处
期刊:Pediatric Pulmonology [Wiley]
卷期号:58 (5): 1427-1437 被引量:7
标识
DOI:10.1002/ppul.26337
摘要

Abstract Background Clinical and radiographic criteria are traditionally used to determine the need for surfactant therapy in preterm infants. Lung ultrasound is a bedside test that offers a rapid, radiation‐free, alternative to this approach. Objective To conduct a systematic review and meta‐analysis to determine the accuracy of a lung ultrasound score (LUS) in identifying infants who would receive at least one surfactant dose. Secondary aims were to evaluate the predictive accuracy for ≥2 doses and the accuracy of a different image classification system based on three lung ultrasound profiles. Methods PubMed, SCOPUS, Biomed Central, and the Cochrane library between January 2011 and December 2021 were searched. Full articles enrolling preterm neonates who underwent lung ultrasound to predict surfactant administration were assessed and analyzed following Preferred Reporting Items for Systematic Review and Meta‐Analysis Protocols (PRISMA‐P) and QUADAS‐2 guidelines. Results Seven prospective studies recruiting 697 infants met the inclusion criteria. Risk of bias was generally low. Oxygen requirement, clinical and radiographic signs of respiratory distress syndrome were used as reference standards for surfactant replacement. The summary receiver operator characteristic (sROC) curve for LUS predicting first surfactant dose showed an area under the curve (AUC) = 0.88 (95% confidence interval [CI]: 0.82–0.91); optimal specificity and sensitivity (Youden index) were 0.83 and 0.81 respectively. Pooled estimates of sensitivity, specificity, diagnostic odds ratio, negative predictive value, and positive predictive value for LUS predicting the first surfactant dose were 0.89 (0.82–0.95), 0.86 (0.78–0.95), 3.78 (3.05–4.50), 0.92 (0.87–0.97), 0.79 (0.65–0.92). The sROC curve for the accuracy of Type 1 lung profile in predicting first surfactant dose showed an AUC of 0.88; optimal specificity and sensitivity were both 0.86. Two studies addressing the predictive accuracy of LUS for ≥2 surfactant doses had high heterogeneity and were unsuitable to combine in a meta‐analysis. Discussion Despite current significant variation in LUS thresholds, lung ultrasound is highly predictive of the need for early surfactant replacement. This evidence was derived from studies with homogeneous patient characteristics and low risk of bias.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻的千秋完成签到,获得积分10
3秒前
冷静新烟发布了新的文献求助10
4秒前
JamesPei应助嘎嘎嘎嘎采纳,获得10
4秒前
G浅浅完成签到,获得积分10
5秒前
香蕉觅云应助啊盘采纳,获得10
6秒前
lyy完成签到,获得积分10
6秒前
hhgcc完成签到,获得积分10
7秒前
JWang完成签到,获得积分20
8秒前
Air_yakamoz完成签到,获得积分10
9秒前
火星上的沛春完成签到,获得积分10
11秒前
12秒前
Owen应助Air_yakamoz采纳,获得10
13秒前
15秒前
15秒前
明灯三千完成签到,获得积分10
15秒前
16秒前
啦啦啦发布了新的文献求助10
16秒前
222完成签到,获得积分10
17秒前
殷勤的凝海完成签到 ,获得积分10
17秒前
zho发布了新的文献求助10
18秒前
香香丿完成签到 ,获得积分10
18秒前
Morgen发布了新的文献求助30
19秒前
科研通AI5应助称心寒松采纳,获得10
22秒前
222发布了新的文献求助10
22秒前
ding应助火星上冬日采纳,获得10
23秒前
葱葱不吃葱完成签到 ,获得积分10
23秒前
cach完成签到,获得积分10
25秒前
和谐白云完成签到,获得积分10
26秒前
Morgen完成签到,获得积分10
26秒前
不吃榴莲应助科研通管家采纳,获得10
28秒前
共享精神应助科研通管家采纳,获得10
28秒前
许甜甜鸭应助科研通管家采纳,获得10
28秒前
wed应助科研通管家采纳,获得20
28秒前
无花果应助科研通管家采纳,获得10
28秒前
自然夏槐应助科研通管家采纳,获得10
28秒前
852应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
深情安青应助科研通管家采纳,获得10
29秒前
29秒前
顾矜应助小田睡不醒采纳,获得10
30秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823627
求助须知:如何正确求助?哪些是违规求助? 3366071
关于积分的说明 10438607
捐赠科研通 3085191
什么是DOI,文献DOI怎么找? 1697217
邀请新用户注册赠送积分活动 816292
科研通“疑难数据库(出版商)”最低求助积分说明 769474