已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Classification and characterization of coexisting defects from magnetic flux leakage data using deep learning method

漏磁 深度学习 卷积神经网络 无损检测 铁磁性 人工智能 材料科学 有限元法 计算机科学 表征(材料科学) 泄漏(经济) 人工神经网络 管道运输 机器学习 结构工程 工程类 机械工程 磁铁 凝聚态物理 物理 纳米技术 量子力学 宏观经济学 经济
作者
Guanyu Piao,Jiatong Ling,Jiaoyang Li
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:13 (1) 被引量:3
标识
DOI:10.1063/9.0000451
摘要

Ferromagnetic materials are widely used in infrastructure, such as steam generators, storage tanks, and gas pipelines. During their service time, ferromagnetic materials are subject to deterioration and defects are prone to generate which could damage infrastructures and cause catastrophic accidents. Magnetic flux leakage (MFL) is one of the widely used nondestructive evaluation (NDE) methods to detect and characterize defects in ferromagnetic materials to ensure infrastructure safety. However, many research works have been carried out on the modeling, classification, and characterization of a single defect, while the scenario of coexisting defects is ignored. In practical field, the coexistence of surface and subsurface defects within an overlapping area can cause much earlier than expected deterioration or even penetration, the result of which is more damaging. Here, we propose a convolutional neural network (CNN) based deep learning method to differentiate between single defect and coexisting defects scenarios and estimate the defect sizes including length, width, and depth. Finite-element-method (FEM) simulation models are developed to investigate the effect of coexisting defects on the measured MFL data. The models with different defect parameters are calculated to generate 354 MFL data for the training and testing of deep learning method. The experimental results show that the classification accuracy of deep learning method is over 94% and higher than the traditional machine learning methods, and the defect size estimation errors are within 0.97 mm, 0.59 mm, and 3.67% of wall thickness, respectively, which are validated to be a good classification and characterization tool for the coexisting defects scenario.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lt发布了新的文献求助10
2秒前
wynne313完成签到 ,获得积分10
3秒前
5秒前
温暖的芷烟完成签到,获得积分10
11秒前
16秒前
阿宇发布了新的文献求助10
16秒前
16秒前
20秒前
23秒前
高高的小之完成签到,获得积分10
23秒前
23秒前
知性的成完成签到 ,获得积分10
24秒前
27秒前
云轰2857完成签到,获得积分10
28秒前
隐形曼青应助shangxinyu采纳,获得10
28秒前
TXZ06完成签到,获得积分10
28秒前
yzklov发布了新的文献求助10
28秒前
vida完成签到 ,获得积分10
29秒前
枫威完成签到 ,获得积分10
29秒前
KWANZ完成签到,获得积分10
31秒前
梁jj完成签到,获得积分10
33秒前
Tayzon完成签到 ,获得积分10
37秒前
A.y.w完成签到,获得积分10
37秒前
41秒前
研友_Good Hope完成签到,获得积分10
44秒前
川木发布了新的文献求助10
46秒前
46秒前
蒋好完成签到,获得积分10
47秒前
时尚越彬完成签到,获得积分10
48秒前
49秒前
52秒前
orixero应助天真的大船采纳,获得10
53秒前
唐飒发布了新的文献求助10
53秒前
川木完成签到,获得积分10
54秒前
56秒前
yzizz发布了新的文献求助10
57秒前
57秒前
1分钟前
爆米花应助chen采纳,获得10
1分钟前
Gun完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542985
求助须知:如何正确求助?哪些是违规求助? 4629125
关于积分的说明 14610877
捐赠科研通 4570403
什么是DOI,文献DOI怎么找? 2505738
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454361