Deep learning–based detection of generalized convulsive seizures using a wrist‐worn accelerometer

加速度计 手腕 灵敏度(控制系统) 卷积神经网络 医学 置信区间 恒虚警率 计算机科学 人工智能 深度学习 外科 工程类 内科学 操作系统 电子工程
作者
Antoine Spahr,Adriano Bernini,Pauline Ducouret,Christoph Baumgartner,Johannes Koren,Lukas L. Imbach,Sándor Beniczky,Sidsel Armand Larsen,Sylvain Rheims,Martin Fabricius,Margitta Seeck,Bernhard J. Steinhoff,Isabelle Beuchat,Jonathan Dan,David Atienza,Charles‐Edouard Bardyn,Philippe Ryvlin
出处
期刊:Epilepsia [Wiley]
标识
DOI:10.1111/epi.18406
摘要

Abstract Objective To develop and validate a wrist‐worn accelerometer‐based, deep‐learning tunable algorithm for the automated detection of generalized or bilateral convulsive seizures (CSs) to be integrated with off‐the‐shelf smartwatches. Methods We conducted a prospective multi‐center study across eight European epilepsy monitoring units, collecting data from 384 patients undergoing video electroencephalography (vEEG) monitoring with a wrist‐worn three dimensional (3D)–accelerometer sensor. We developed an ensemble‐based convolutional neural network architecture with tunable sensitivity through quantile‐based aggregation. The model, referred to as Episave, used accelerometer amplitude as input. It was trained on data from 37 patients who had 54 CSs and evaluated on an independent dataset comprising 347 patients, including 33 who had 49 CSs. Results Cross‐validation on the training set showed that optimal performance was obtained with an aggregation quantile of 60, with a 98% sensitivity, and a false alarm rate (FAR) of 1/6 days. Using this quantile on the independent test set, the model achieved a 96% sensitivity (95% confidence interval [CI]: 90%–100%), a FAR of <1/8 days (95% CI: 1/9–1/7 days) with 1 FA/61 nights, and a median detection latency of 26 s. One of the two missed CSs could be explained by the patient's arm, which was wearing the sensor, being trapped in the bed rail. Other quantiles provided up to 100% sensitivity at the cost of a greater FAR (1/2 days) or very low FAR (1/100 days) at the cost of lower sensitivity (86%). Significance This Phase 2 clinical validation study suggests that deep learning techniques applied to single‐sensor accelerometer data can achieve high CS detection performance while enabling tunable sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
市井完成签到,获得积分10
1秒前
1秒前
天天快乐应助wangjuan采纳,获得10
1秒前
烂漫书白完成签到,获得积分20
1秒前
大模型应助fool采纳,获得10
1秒前
2秒前
一一发布了新的文献求助10
2秒前
SciGPT应助田家溢采纳,获得10
2秒前
2秒前
chenyu完成签到,获得积分10
3秒前
3秒前
当时只道是寻常完成签到 ,获得积分10
4秒前
冰淇淋关注了科研通微信公众号
5秒前
5秒前
孤独的珩发布了新的文献求助10
5秒前
anglervlf完成签到,获得积分10
5秒前
5秒前
Androc完成签到,获得积分10
6秒前
7秒前
小猪发布了新的文献求助10
7秒前
如梦中完成签到,获得积分10
8秒前
脑洞疼应助霍华淞采纳,获得10
8秒前
gggja完成签到,获得积分10
8秒前
木木三发布了新的文献求助10
8秒前
市井发布了新的文献求助20
9秒前
高玉瑶完成签到,获得积分10
9秒前
hfhfhf完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
小马甲应助lllllllll采纳,获得10
12秒前
小s发布了新的文献求助10
12秒前
12秒前
一一应助科学家采纳,获得10
13秒前
善学以致用应助Trost采纳,获得10
14秒前
甜栗栗子应助低温少年采纳,获得10
14秒前
14秒前
学食品的小宋完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3947536
求助须知:如何正确求助?哪些是违规求助? 3492815
关于积分的说明 11066571
捐赠科研通 3223585
什么是DOI,文献DOI怎么找? 1781638
邀请新用户注册赠送积分活动 866406
科研通“疑难数据库(出版商)”最低求助积分说明 800332