Generative AI‐supported progressive prompting for professional training: Effects on learning achievement, critical thinking, and cognitive load

认知负荷 认知 批判性思维 心理学 生成语法 专业发展 培训(气象学) 生成模型 教学设计 认知心理学 数学教育 教育学 计算机科学 人工智能 神经科学 物理 气象学
作者
Chia‐Jung Li,Gwo‐Jen Hwang,Ching‐Yi Chang,Hai‐Ching Su
出处
期刊:British Journal of Educational Technology [Wiley]
标识
DOI:10.1111/bjet.13594
摘要

Abstract In professional training, developing critical thinking is essential for professionals to analyse problem situations and respond effectively to emergencies. Conventional professional training typically employs multimedia materials combined with progressive prompting (PP) to support trainees in constructing knowledge and solving problems on their own. However, for those trainees who have insufficient knowledge or experience, it could be challenging for them to understand and utilise the prompts for finding solutions to the problems to be dealt with. To provide a personalised advisor during the progressive prompting‐based training process, this study proposed a generative artificial intelligence (GenAI)‐supported PP (GenAI‐PP) learning approach by employing GenAI to facilitate discussions with individual trainees regarding the prompts, thereby encouraging deeper thinking and critical analysis at each stage. This study adopted a quasi‐experimental design to compare the effects of GenAI‐PP and the conventional PP (C‐PP) approach on students' learning outcomes. The participants were 62 newly qualified nurses with less than one year of clinical experience in Taiwan, who needed to learn to interpret electrocardiograms (ECGs) as part of their professional training. Results showed that the GenAI‐PP group significantly outperformed the C‐PP group on test scores ( p < 0.01) and critical thinking ( p < 0.01). Moreover, the GenAI‐PP group experienced significantly lower extraneous cognitive load compared to the C‐PP group ( p < 0.001). These findings suggest the potential of GenAI‐PP in professional training; that is, GenAI could serve as a learning partner to discuss with trainees the prompts provided by the instructor to help them master core concepts and develop key career competencies, especially for training programs that require in‐depth analysis and decision‐making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
janice116688完成签到,获得积分10
刚刚
刚刚
jingjing发布了新的文献求助10
1秒前
zxxx完成签到,获得积分10
2秒前
帅气小霜发布了新的文献求助10
4秒前
尛瞐慶成发布了新的文献求助20
5秒前
5秒前
十一发布了新的文献求助10
6秒前
8秒前
jingjing完成签到,获得积分10
9秒前
9秒前
Albert发布了新的文献求助10
11秒前
十一完成签到,获得积分20
13秒前
14秒前
14秒前
尛瞐慶成发布了新的文献求助10
14秒前
瘦瘦的迎南完成签到 ,获得积分10
14秒前
16秒前
16秒前
boluo666完成签到 ,获得积分10
18秒前
王yuu发布了新的文献求助10
18秒前
18秒前
19854173750完成签到,获得积分20
18秒前
真找不到完成签到,获得积分10
19秒前
薛栋潮完成签到 ,获得积分10
20秒前
19854173750发布了新的文献求助10
21秒前
唠叨的墨镜完成签到,获得积分10
21秒前
22秒前
真找不到发布了新的文献求助10
22秒前
22秒前
HaHa007完成签到,获得积分10
22秒前
111发布了新的文献求助10
23秒前
薛栋潮关注了科研通微信公众号
23秒前
猪猪hero应助jackycas采纳,获得10
24秒前
26秒前
meimei完成签到 ,获得积分10
28秒前
lu完成签到,获得积分10
30秒前
Fjj完成签到,获得积分10
31秒前
科研通AI5应助dawang采纳,获得10
32秒前
无奈的萍发布了新的文献求助10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779897
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222437
捐赠科研通 3040465
什么是DOI,文献DOI怎么找? 1668851
邀请新用户注册赠送积分活动 798805
科研通“疑难数据库(出版商)”最低求助积分说明 758563