Development and validation of a real-time prediction model for acute kidney injury in hospitalized patients

急性肾损伤 医学 肌酐 重症监护医学 预测建模 队列 急诊医学 内科学 计算机科学 机器学习
作者
Yuhui Zhang,Damin Xu,Jianwei Gao,Ruiguo Wang,Kun Yan,Hong Liang,Juan Xu,Youlu Zhao,Xizi Zheng,Lingyi Xu,Jinwei Wang,Fu-de Zhou,Guopeng Zhou,Qingqing Zhou,Yang Zhao,Xiaoli Chen,Yulan Shen,Tianrong Ji,Yunlin Feng,Ping Wang
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:16 (1) 被引量:1
标识
DOI:10.1038/s41467-024-55629-5
摘要

Early prediction of acute kidney injury (AKI) may provide a crucial opportunity for AKI prevention. To date, no prediction model targeting AKI among general hospitalized patients in developing countries has been published. Here we show a simple, real-time, interpretable AKI prediction model for general hospitalized patients developed from a large tertiary hospital in China, which has been validated across five independent, geographically distinct, different tiered hospitals. The model containing 20 readily available variables demonstrates consistent, high levels of predictive discrimination in validation cohort, with AUCs for serum creatinine-based AKI and severe AKI within 48 h ranging from 0.74–0.85 and 0.83–0.90 for transported models and from 0.81–0.90 and 0.88–0.95 for refitted models, respectively. With optimal probability cutoffs, the refitted model could predict AKI at a median of 72 (24–198) hours in advance in internal validation, and 54–90 h in advance in external validation. Broad application of the model in the future may provide an effective, convenient and cost-effective approach for AKI prevention. Early prediction of Acute kidney injury (AKI) may be crucial for AKI prevention. Here the authors present a simple, real-time, interpretable, AKI prediction model for hospitalized patients, based on routinely collected electronic health records data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
liujx完成签到,获得积分10
1秒前
trans应助俊逸的代曼采纳,获得10
2秒前
MI完成签到,获得积分20
2秒前
2秒前
tzq完成签到,获得积分10
2秒前
山有扶苏完成签到,获得积分10
2秒前
yydsyk发布了新的文献求助10
3秒前
6秒前
ning完成签到,获得积分10
6秒前
汪汪发布了新的文献求助10
6秒前
7秒前
jingerous发布了新的文献求助10
7秒前
炫炫炫发布了新的文献求助30
7秒前
7秒前
Lucas应助Dannie采纳,获得20
7秒前
李家新29完成签到,获得积分10
8秒前
Hello应助工作还是工作采纳,获得10
8秒前
8秒前
9秒前
nn发布了新的文献求助10
10秒前
明理冬瓜完成签到,获得积分10
10秒前
一一发布了新的文献求助10
11秒前
无限大山完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
科目三应助勤劳蜜蜂采纳,获得10
12秒前
12秒前
lsn完成签到,获得积分10
12秒前
13秒前
jingerous完成签到,获得积分10
13秒前
yanyan发布了新的文献求助10
15秒前
打打应助迅速向日葵采纳,获得10
15秒前
123完成签到,获得积分10
15秒前
July完成签到,获得积分10
15秒前
16秒前
搜集达人应助计算机算了采纳,获得30
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835693
求助须知:如何正确求助?哪些是违规求助? 3378029
关于积分的说明 10501900
捐赠科研通 3097669
什么是DOI,文献DOI怎么找? 1705937
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772260