Identification of ageing-associated gene signatures in heart failure with preserved ejection by integrated bioinformatics analysis and machine learning

鉴定(生物学) 心力衰竭 计算生物学 老化 生物信息学 计算机科学 生物 医学 内科学 植物
作者
Guoxing Li,Qing Zhou,Ming Xie,Bo Zhao,Keyu Zhang,Yuan Luo,Lingwen Kong,Diansa Gao,Yongzheng Guo
出处
期刊:Genes and Diseases [Elsevier]
卷期号:12 (4): 101478-101478 被引量:1
标识
DOI:10.1016/j.gendis.2024.101478
摘要

The incidence of heart failure with preserved ejection fraction (HFpEF) increases with the ageing of populations. This study aimed to explore ageing-associated gene signatures in HFpEF to develop new diagnostic biomarkers and provide new insights into the underlying mechanisms of HFpEF. Mice were subjected to a high-fat diet combined with L-NG-nitroarginine methyl ester (l-NAME) to induce HFpEF, and next-generation sequencing was performed with HFpEF hearts. Additionally, separate datasets were acquired from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were used to identify ageing-related DEGs. Support vector machine, random forest, and least absolute shrinkage and selection operator algorithms were employed to identify potential diagnostic genes from ageing-related DEGs. The diagnostic value was assessed using a nomogram and receiver operating characteristic curve. The gene and related protein expression were verified by reverse transcription PCR and western blotting. The immune cell infiltration in hearts was analysed using the single-sample gene-set enrichment analysis algorithm. The results showed that the merged HFpEF datasets comprised 103 genes, of which 15 ageing-related DEGs were further screened in. The ageing-related DEGs were primarily associated with immune and metabolism regulation. AGTR1a, NR3C1, and PRKAB1 were selected for nomogram construction and machine learning-based diagnostic value, displaying strong diagnostic potential. Additionally, ageing scores were established based on nine key DEGs, revealing noteworthy differences in immune cell infiltration across HFpEF subtypes. In summary, those results highlight the significance of immune dysfunction in HFpEF. Furthermore, ageing-related DEGs might serve as promising prognostic and predictive biomarkers for HFpEF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sss完成签到,获得积分10
刚刚
刚刚
1秒前
Qwering应助吉祥高趙采纳,获得20
2秒前
sunny123完成签到,获得积分10
3秒前
彭于晏应助迷你的严青采纳,获得10
3秒前
生动的夏波应助务实砖头采纳,获得10
3秒前
3秒前
zhiqu完成签到,获得积分10
4秒前
迅速的南珍完成签到,获得积分10
4秒前
Quinna发布了新的文献求助10
5秒前
xyg发布了新的文献求助10
6秒前
弱水给弱水的求助进行了留言
6秒前
6秒前
比和vv完成签到,获得积分10
7秒前
QKOOKIE发布了新的文献求助10
7秒前
7秒前
sundial完成签到,获得积分10
7秒前
甜美的成败完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
烟花应助加油采纳,获得10
10秒前
李sir发布了新的文献求助10
11秒前
科研通AI6应助努力科研采纳,获得10
11秒前
will_fay给yin的求助进行了留言
11秒前
12秒前
yy发布了新的文献求助10
12秒前
琛瑜发布了新的文献求助10
13秒前
Owen应助slj采纳,获得10
14秒前
量子星尘发布了新的文献求助30
14秒前
李鸣笛发布了新的文献求助30
14秒前
李子恒发布了新的文献求助10
14秒前
15秒前
15秒前
华仔应助111采纳,获得10
15秒前
Master完成签到,获得积分10
15秒前
张子贤发布了新的文献求助10
15秒前
小蘑菇应助乐正青亦采纳,获得10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752683
求助须知:如何正确求助?哪些是违规求助? 5476106
关于积分的说明 15374754
捐赠科研通 4891582
什么是DOI,文献DOI怎么找? 2630561
邀请新用户注册赠送积分活动 1578788
关于科研通互助平台的介绍 1534675