CXR-LLaVA: a multimodal large language model for interpreting chest X-ray images

医学 神经组阅片室 介入放射学 放射科 医学物理学 核医学 神经学 精神科
作者
Seowoo Lee,Jiwon Youn,Hyungjin Kim,Mansu Kim,Soon Ho Yoon
出处
期刊:European Radiology [Springer Science+Business Media]
标识
DOI:10.1007/s00330-024-11339-6
摘要

This study aimed to develop an open-source multimodal large language model (CXR-LLaVA) for interpreting chest X-ray images (CXRs), leveraging recent advances in large language models (LLMs) to potentially replicate the image interpretation skills of human radiologists. For training, we collected 592,580 publicly available CXRs, of which 374,881 had labels for certain radiographic abnormalities (Dataset 1) and 217,699 provided free-text radiology reports (Dataset 2). After pre-training a vision transformer with Dataset 1, we integrated it with an LLM influenced by the LLaVA network. Then, the model was fine-tuned, primarily using Dataset 2. The model's diagnostic performance for major pathological findings was evaluated, along with the acceptability of radiologic reports by human radiologists, to gauge its potential for autonomous reporting. The model demonstrated impressive performance in test sets, achieving an average F1 score of 0.81 for six major pathological findings in the MIMIC internal test set and 0.56 for six major pathological findings in the external test set. The model's F1 scores surpassed those of GPT-4-vision and Gemini-Pro-Vision in both test sets. In human radiologist evaluations of the external test set, the model achieved a 72.7% success rate in autonomous reporting, slightly below the 84.0% rate of ground truth reports. This study highlights the significant potential of multimodal LLMs for CXR interpretation, while also acknowledging the performance limitations. Despite these challenges, we believe that making our model open-source will catalyze further research, expanding its effectiveness and applicability in various clinical contexts. Question How can a multimodal large language model be adapted to interpret chest X-rays and generate radiologic reports? Findings The developed CXR-LLaVA model effectively detects major pathological findings in chest X-rays and generates radiologic reports with a higher accuracy compared to general-purpose models. Clinical relevance This study demonstrates the potential of multimodal large language models to support radiologists by autonomously generating chest X-ray reports, potentially reducing diagnostic workloads and improving radiologist efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Rita发布了新的文献求助10
4秒前
大个应助傢誠采纳,获得10
5秒前
5秒前
心肌细胞完成签到,获得积分10
7秒前
7秒前
xuehuali完成签到,获得积分20
8秒前
默默完成签到 ,获得积分10
8秒前
8秒前
哈哈发布了新的文献求助10
9秒前
科研通AI5应助自由山槐采纳,获得30
9秒前
心肌细胞发布了新的文献求助10
12秒前
12秒前
zhangpeng发布了新的文献求助10
13秒前
14秒前
C.Z.Young应助追寻的问玉采纳,获得10
14秒前
傢誠发布了新的文献求助10
16秒前
17秒前
小蘑菇应助春瞳采纳,获得10
19秒前
feng发布了新的文献求助10
19秒前
hl发布了新的文献求助10
20秒前
伏线完成签到 ,获得积分10
20秒前
Aileen完成签到,获得积分10
21秒前
共享精神应助吴若魔采纳,获得10
22秒前
桐桐应助NingZH采纳,获得10
23秒前
小房子完成签到,获得积分10
24秒前
与yu完成签到,获得积分20
24秒前
活泼的之槐完成签到,获得积分10
25秒前
失眠夜玉完成签到,获得积分10
26秒前
27秒前
书剑飞侠完成签到,获得积分10
28秒前
杜若完成签到 ,获得积分10
28秒前
杰king完成签到 ,获得积分20
29秒前
30秒前
美好斓发布了新的文献求助30
31秒前
万能图书馆应助小幻螺采纳,获得10
31秒前
35秒前
温暖的广缘完成签到 ,获得积分10
36秒前
春瞳发布了新的文献求助10
38秒前
材料小白完成签到,获得积分10
38秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814439
求助须知:如何正确求助?哪些是违规求助? 3358522
关于积分的说明 10395901
捐赠科研通 3075750
什么是DOI,文献DOI怎么找? 1689542
邀请新用户注册赠送积分活动 813027
科研通“疑难数据库(出版商)”最低求助积分说明 767439