Cardiopulmonary exercise testing before lung resection surgery: still indicated? Evaluating predictive utility using machine learning

医学 体外循环 切除术 外科 物理疗法 机器学习 内科学 计算机科学
作者
Ákos Filakovszky,Kristián Brat,Thomas Tschoellitsch,Stepan Bartos,Andrej Mazur,Jens Meier,Lyle J. Olson,Ivan Čundrle
出处
期刊:Thorax [BMJ]
卷期号:: thorax-221485
标识
DOI:10.1136/thorax-2024-221485
摘要

Rationale Despite significant advances in patient care and outcomes, criteria for cardiopulmonary exercise testing (CPET) in risk stratification guidelines for lung resection have not been updated in over a decade. We hypothesised that CPET no longer holds additional predictive value for postoperative complications. Methods In this secondary analysis, we included lung resection candidates from two prospective, multicentre studies eligible for CPET and assessed with preoperative pulmonary function tests (PFTs) and arterial blood gas analysis. Postoperative pulmonary (PPCs) and cardiovascular complications (PCCs) were documented during hospitalisation. We trained five types of machine learning models applying nested cross-validation to predict complications and compared predictive performance based on four metrics, including area under the receiver operating characteristic curve (AUC-ROC). Results A total of 497 patients were included. PPCs developed in 71 (14%) patients. Adding CPET parameters to PFTs and baseline clinical data did not improve the ability of models to predict PPCs in unselected patients (AUC-ROC=0.72–0.78; p=0.47), nor in those meeting American College of Chest Physicians (ACCPs) (n=236; AUC-ROC=0.64–0.78; p=0.70) or European Respiratory Society/European Society of Thoracic Surgery (ERS/ESTS) criteria (n=168; AUC-ROC=0.59–0.76; p=0.92). PCCs developed in 90 (18%) patients. CPET parameters likewise did not improve model performance for the prediction of PCCs in unselected patients (AUC-ROC=0.65–0.73; p=0.96), nor in the ACCP (AUC-ROC=0.61–0.73; p=0.82) or ERS/ESTS subgroups (AUC-ROC=0.62–0.69; p=0.87). Conclusions In contemporary surgical practice, CPET did not improve the predictive performance of machine learning models for PPCs or PCCs in patients with an indication based on established guidelines or in those without. The role of CPET in preoperative risk stratification for lung resection should be re-evaluated. Trial registration number NCT03498352 , NCT04826575 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kk完成签到,获得积分10
2秒前
2秒前
kangshuai完成签到,获得积分10
4秒前
Double_N完成签到,获得积分10
5秒前
AA完成签到,获得积分10
5秒前
淡定的健柏完成签到 ,获得积分10
5秒前
6秒前
sangnina发布了新的文献求助10
6秒前
冰柠檬完成签到,获得积分20
8秒前
万松辉完成签到,获得积分10
10秒前
冰柠檬发布了新的文献求助10
11秒前
龚小丽完成签到 ,获得积分10
12秒前
CUREME完成签到,获得积分10
15秒前
joybee完成签到,获得积分0
15秒前
SH123完成签到 ,获得积分10
16秒前
JxJ完成签到,获得积分10
16秒前
Mercury完成签到,获得积分10
17秒前
beforethedawn完成签到,获得积分10
19秒前
皛鱼完成签到,获得积分10
20秒前
心理可达鸭完成签到,获得积分10
20秒前
猪猪侠完成签到,获得积分10
22秒前
张振宇完成签到 ,获得积分10
23秒前
张贵虎完成签到 ,获得积分10
26秒前
笑点低的静竹完成签到,获得积分10
27秒前
霸气的小土豆完成签到 ,获得积分10
28秒前
sangnina完成签到,获得积分20
29秒前
务实鞅完成签到 ,获得积分10
29秒前
rqf发布了新的文献求助10
29秒前
一颗西柚完成签到 ,获得积分10
29秒前
何浏亮完成签到,获得积分10
30秒前
陈志刚完成签到,获得积分10
30秒前
鲤鱼平安完成签到,获得积分10
31秒前
32秒前
34秒前
化龙完成签到,获得积分10
36秒前
whoops完成签到 ,获得积分10
36秒前
款款发布了新的文献求助10
37秒前
Ulrica完成签到,获得积分10
39秒前
勇敢小羊发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
Decoding Teacher Well-being in Rural China 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4807219
求助须知:如何正确求助?哪些是违规求助? 4122120
关于积分的说明 12753279
捐赠科研通 3856850
什么是DOI,文献DOI怎么找? 2123440
邀请新用户注册赠送积分活动 1145522
关于科研通互助平台的介绍 1038074