Towards fast-charging high-energy lithium-ion batteries: From nano- to micro-structuring perspectives

结构化 电池(电) 锂(药物) 电化学 计算机科学 储能 材料科学 锂离子电池 纳米技术 表征(材料科学) 电极 功率(物理) 化学 物理 内分泌学 医学 财务 量子力学 物理化学 经济
作者
Zhengyu Ju,Xu Xiao,Xiao Zhang,Kasun U. Raigama,Guihua Yu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:454: 140003-140003 被引量:56
标识
DOI:10.1016/j.cej.2022.140003
摘要

• Physicochemical fundamentals in electrochemical reactions were summarized in lithium-ion battery systems. • Charge transport effects in high-energy batteries were discussed and analyzed via numerical simulations. • Recent efforts from nano- to micro-structuring for advanced battery electrodes were reviewed. • A feedback loop among structure engineering, characterization and simulation was proposed. Electric vehicles (EVs) have been playing an indispensable role in reducing greenhouse gas emissions for our modern society. However, current EVs are difficult to meet people’s diverse travel needs, especially in long endurance and fast-charging capacities. At the heart of this issue is the physicochemical limit of current lithium-ion batteries (LIBs), which are the core parts for powering the vehicles. Hence, LIBs with simultaneous high energy and power are critically required to further promote the development of EVs. In this review, we first summarize the key electrochemical processes in electrochemical reactions which lead to the corresponding overpotentials in or between multiple battery components. Furthermore, numerical simulations are employed to quantitatively analyze the effects of versatile electrode parameters on electrochemical properties in high-energy NMC811//graphite systems. On the basis of the in-depth understandings from simulation, recent experimental efforts on designing electroactive materials and electrode architectures across multiple length scales are discussed. Among them, nano-structuring can promote local mass transport and stabilize the interfaces at the particle-level, while micro-structuring can establish efficient pathways for charge carriers at the electrode-level. Finally, we conclude that a tight feedback loop among structure engineering, characterization and simulation should be followed to speed up the understanding of the deficiencies existing in current electrode designs as well as point out the possible electrode optimization routes for next-generation fast-charging LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助semigreen采纳,获得10
刚刚
1秒前
和谐越彬发布了新的文献求助10
2秒前
2秒前
2秒前
科研顺利完成签到 ,获得积分10
2秒前
无私小苏完成签到,获得积分20
3秒前
orixero应助不安枕头采纳,获得10
3秒前
4秒前
yingzg完成签到,获得积分20
4秒前
NanNan626完成签到,获得积分10
4秒前
4秒前
5秒前
kyo发布了新的文献求助10
6秒前
John发布了新的文献求助10
6秒前
执着的冬瓜完成签到,获得积分10
7秒前
Tmh完成签到,获得积分10
7秒前
眼睛大蹇发布了新的文献求助10
8秒前
Blue_Pig发布了新的文献求助10
8秒前
美满的涔发布了新的文献求助10
9秒前
CipherSage应助猛猛冲采纳,获得10
9秒前
wanci应助dida采纳,获得10
10秒前
Morli完成签到,获得积分20
11秒前
11秒前
11秒前
一一发布了新的文献求助10
13秒前
量子咸鱼K完成签到,获得积分10
13秒前
舒苏应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
猪猪hero应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
Ava应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
14秒前
14秒前
浮游应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626956
求助须知:如何正确求助?哪些是违规求助? 4712890
关于积分的说明 14960640
捐赠科研通 4783094
什么是DOI,文献DOI怎么找? 2554594
邀请新用户注册赠送积分活动 1516222
关于科研通互助平台的介绍 1476518