Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference

自适应神经模糊推理系统 样本熵 计算机科学 人工智能 断层(地质) 熵(时间箭头) 非线性系统 方位(导航) 推论 神经模糊 模式识别(心理学) 人工神经网络 控制理论(社会学) 机器学习 模糊逻辑 数据挖掘 模糊控制系统 地质学 物理 地震学 量子力学 控制(管理)
作者
Long Zhang,Guoliang Xiong,Hesheng Liu,Huijun Zou,Guo Weizhong
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:37 (8): 6077-6085 被引量:316
标识
DOI:10.1016/j.eswa.2010.02.118
摘要

A bearing fault diagnosis method has been proposed based on multi-scale entropy (MSE) and adaptive neuro-fuzzy inference system (ANFIS), in order to tackle the nonlinearity existing in bearing vibration as well as the uncertainty inherent in the diagnostic information. MSE refers to the calculation of entropies (e.g. appropriate entropy, sample entropy) across a sequence of scales, which takes into account not only the dynamic nonlinearity but also the interaction and coupling effects between mechanical components, thus providing much more information regarding machinery operating condition in comparison with traditional single scale-based entropy. ANFIS can benefit from the decision-making under uncertainty enabled by fuzzy logic as well as from learning and adaptation that neural networks provide. In this study, MSE and ANFIS are employed for feature extraction and fault recognition, respectively. Experiments were conducted on electrical motor bearings with three different fault categories and several levels of fault severity. The experimental results indicate that the proposed approach cannot only reliably discriminate among different fault categories, but identify the level of fault severity. Thus, the proposed approach has possibility for bearing incipient fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杜123发布了新的文献求助10
1秒前
Phosphate完成签到,获得积分10
2秒前
Dreames完成签到,获得积分10
2秒前
Y奥发布了新的文献求助10
3秒前
3秒前
情怀应助不科学的呵呵采纳,获得10
3秒前
特独斩完成签到 ,获得积分10
3秒前
3秒前
着急的柔完成签到,获得积分10
4秒前
锅包肉完成签到 ,获得积分10
4秒前
hobowei完成签到 ,获得积分10
4秒前
曾经的康乃馨完成签到 ,获得积分10
5秒前
美丽的凌蝶完成签到,获得积分10
5秒前
pu66发布了新的文献求助10
6秒前
斯文败类应助一杯六一采纳,获得10
6秒前
7秒前
8秒前
8秒前
新青年完成签到,获得积分10
8秒前
10秒前
11秒前
冰魂应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
12秒前
冰魂应助科研通管家采纳,获得10
12秒前
Hayat应助科研通管家采纳,获得50
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
冰魂应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843667
求助须知:如何正确求助?哪些是违规求助? 3385966
关于积分的说明 10543359
捐赠科研通 3106778
什么是DOI,文献DOI怎么找? 1711162
邀请新用户注册赠送积分活动 823925
科研通“疑难数据库(出版商)”最低求助积分说明 774390