Contrastive Learning Augmented Graph Auto-Encoder

计算机科学 判别式 图形 编码器 特征学习 理论计算机科学 嵌入 聚类分析 节点(物理) 人工智能 自编码 图嵌入 模式识别(心理学) 深度学习 结构工程 工程类 操作系统
作者
Shuaishuai Zu,Chuyu Wang,Yafei Liu,Jun Shen,Li Li
出处
期刊:Communications in computer and information science 卷期号:: 280-291
标识
DOI:10.1007/978-981-99-8145-8_22
摘要

Graph embedding aims to embed the information of graph data into low-dimensional representation space. Prior methods generally suffer from an imbalance of preserving structural information and node features due to their pre-defined inductive biases, leading to unsatisfactory generalization performance. In order to preserve the maximal information, graph contrastive learning (GCL) has become a prominent technique for learning discriminative embeddings. However, in contrast with graph-level embeddings, existing GCL methods generally learn less discriminative node embeddings in a self-supervised way. In this paper, we ascribe above problem to two challenges: 1) graph data augmentations, which are designed for generating contrastive representations, hurt the original semantic information for nodes. 2) the nodes within the same cluster are selected as negative samples. To alleviate these challenges, we propose Contrastive Variational Graph Auto-Encoder (CVGAE). Specifically, we first propose a distribution-dependent regularization to guide the paralleled encoders to generate contrastive representations following similar distributions. Then, we utilize truncated triplet loss, which only selects top-k nodes as negative samples, to avoid over-separate nodes affiliated to the same cluster. Experiments on several real-world datasets show that our model CVGAE advanced performance over all baselines in link prediction, node clustering tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tingsHHH发布了新的文献求助10
刚刚
桐桐应助陪你闯荡采纳,获得10
1秒前
1秒前
彭于晏应助Hades采纳,获得10
2秒前
爆米花应助ZZY采纳,获得10
2秒前
田様应助czcz采纳,获得10
2秒前
丘比特应助粥喝不喝采纳,获得30
3秒前
阿超完成签到,获得积分10
3秒前
huang发布了新的文献求助10
4秒前
小t要读top博应助Bazinga采纳,获得10
4秒前
蟹浦肉完成签到,获得积分10
4秒前
4秒前
CodeCraft应助平常的无极采纳,获得10
5秒前
Lucas应助pv2000采纳,获得10
6秒前
Skye完成签到,获得积分10
6秒前
tingsHHH完成签到,获得积分10
7秒前
7秒前
pp完成签到,获得积分10
7秒前
orixero应助我tm叫复杂惜萱采纳,获得10
7秒前
8秒前
8秒前
皮卡丘2023发布了新的文献求助10
9秒前
10秒前
10秒前
桐桐应助huang采纳,获得10
10秒前
WIN发布了新的文献求助10
10秒前
LIN应助123采纳,获得10
10秒前
11完成签到,获得积分10
10秒前
10秒前
新开完成签到,获得积分10
11秒前
11秒前
高高完成签到,获得积分10
11秒前
黑桃J完成签到,获得积分10
12秒前
luchen完成签到,获得积分10
13秒前
13秒前
13秒前
巴啦啦能量完成签到,获得积分10
13秒前
搜集达人应助望北楼主采纳,获得10
13秒前
liberty发布了新的文献求助10
14秒前
陪你闯荡发布了新的文献求助10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786287
求助须知:如何正确求助?哪些是违规求助? 3332088
关于积分的说明 10253581
捐赠科研通 3047409
什么是DOI,文献DOI怎么找? 1672530
邀请新用户注册赠送积分活动 801330
科研通“疑难数据库(出版商)”最低求助积分说明 760143