材料科学
激子
金属有机骨架
光电流
化学物理
天线效应
量子产额
纳米技术
发光
光电子学
化学
吸附
凝聚态物理
物理
荧光
光学
物理化学
作者
Bapan Saha,Alice Li,Sreehari Surendran Rajasree,Zhiwei Wang,Hary Chris Fry,Debmalya Ray,Pravas Deria
出处
期刊:Small
[Wiley]
日期:2025-08-18
卷期号:21 (39): e05900-e05900
被引量:1
标识
DOI:10.1002/smll.202505900
摘要
Abstract Metal–organic frameworks (MOFs) define a solid‐state platform for developing artificial photosystems. Efficient anisotropic exciton migrations in these frameworks entail “antenna behavior” that can power up the distal interior reaction centers (RC), driving charge separation between donor‐acceptor pairs. Reminiscent of the natural light‐harvesting complex, such processes can achieve high quantum yield by exploiting the vast interior surface of the porous crystallites. It is important to understand the optimum positioning of the RC site relative to the anisotropic exciton migration path within these frameworks. The efficiency of such antenna behavior is probed here through Stern–Volmer (SV) type analysis with a series of node‐anchored redox quenchers, ferrocene‐carboxylate, ferrocene acetate, and dinitrobenzoate. Decoding various intrinsic processes, this work constructs a revised SV formalism in solid assembly that hosts ultrafast anisotropic exciton migration to account for the intrinsic exciton hopping rate from the extrinsic electron transfer rate, and the dimension of effective quenching. This transformative understanding can be applied to other relevant solid‐state assemblies.
科研通智能强力驱动
Strongly Powered by AbleSci AI