Mining whole-lung information by artificial intelligence for predicting EGFR genotype and targeted therapy response in lung cancer: a multicohort study.

肺癌 医学 肿瘤科 内科学 基因型 人口 表皮生长因子受体 癌症 前瞻性队列研究 队列
作者
Shuo Wang,He Yu,Yuncui Gan,Zhangjie Wu,Encheng Li,Xiaohu Li,Jingxue Cao,Yongbei Zhu,Liusu Wang,Hui Deng,Mei Xie,Yuanyong Wang,Xidong Ma,Dan Liu,Bojiang Chen,Panwen Tian,Zhixin Qiu,Jinghong Xian,Jing Ren,Kun Wang,Wei Wei,Fei Xie,Zhenhui Li,Qi Wang,Xinying Xue,Zaiyi Liu,Jingyun Shi,Weimin Li,Jie Tian
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (5): e309-e319
标识
DOI:10.1016/s2589-7500(22)00024-3
摘要

Epidermal growth factor receptor (EGFR) genotype is crucial for treatment decision making in lung cancer, but it can be affected by tumour heterogeneity and invasive biopsy during gene sequencing. Importantly, not all patients with an EGFR mutation have good prognosis with EGFR-tyrosine kinase inhibitors (TKIs), indicating the necessity of stratifying for EGFR-mutant genotype. In this study, we proposed a fully automated artificial intelligence system (FAIS) that mines whole-lung information from CT images to predict EGFR genotype and prognosis with EGFR-TKI treatment.We included 18 232 patients with lung cancer with CT imaging and EGFR gene sequencing from nine cohorts in China and the USA, including a prospective cohort in an Asian population (n=891) and The Cancer Imaging Archive cohort in a White population. These cohorts were divided into thick CT group and thin CT group. The FAIS was built for predicting EGFR genotype and progression-free survival of patients receiving EGFR-TKIs, and it was evaluated by area under the curve (AUC) and Kaplan-Meier analysis. We further built two tumour-based deep learning models as comparison with the FAIS, and we explored the value of combining FAIS and clinical factors (the FAIS-C model). Additionally, we included 891 patients with 56-panel next-generation sequencing and 87 patients with RNA sequencing data to explore the biological mechanisms of FAIS.FAIS achieved AUCs ranging from 0·748 to 0·813 in the six retrospective and prospective testing cohorts, outperforming the commonly used tumour-based deep learning model. Genotype predicted by the FAIS-C model was significantly associated with prognosis to EGFR-TKIs treatment (log-rank p<0·05), an important complement to gene sequencing. Moreover, we found 29 prognostic deep learning features in FAIS that were able to identify patients with an EGFR mutation at high risk of TKI resistance. These features showed strong associations with multiple genotypes (p<0·05, t test or Wilcoxon test) and gene pathways linked to drug resistance and cancer progression mechanisms.FAIS provides a non-invasive method to detect EGFR genotype and identify patients with an EGFR mutation at high risk of TKI resistance. The superior performance of FAIS over tumour-based deep learning methods suggests that genotype and prognostic information could be obtained from the whole lung instead of only tumour tissues.National Natural Science Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123gg完成签到,获得积分20
刚刚
鬲木发布了新的文献求助10
刚刚
刚刚
tododoto完成签到,获得积分10
刚刚
在水一方应助晓豪采纳,获得10
2秒前
852应助鬲木采纳,获得10
3秒前
Miaomiao完成签到,获得积分10
3秒前
ding应助科研通管家采纳,获得10
5秒前
5秒前
ED应助科研通管家采纳,获得10
5秒前
天天玩应助科研通管家采纳,获得10
5秒前
ED应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
6秒前
wert发布了新的文献求助50
8秒前
使用过有几个完成签到,获得积分10
9秒前
灼萤栖木完成签到,获得积分10
10秒前
麻黄阿葵完成签到,获得积分10
10秒前
烂漫的易真完成签到,获得积分10
11秒前
Mingjun完成签到 ,获得积分10
11秒前
高婉婷发布了新的文献求助10
13秒前
14秒前
胡霖完成签到,获得积分10
14秒前
la完成签到 ,获得积分10
14秒前
14秒前
14秒前
16秒前
18秒前
20秒前
xum发布了新的文献求助10
20秒前
高婉婷完成签到,获得积分10
21秒前
msuyue完成签到,获得积分10
21秒前
FashionBoy应助天真大神采纳,获得10
22秒前
飞翔的梦完成签到,获得积分10
22秒前
斑比发布了新的文献求助10
23秒前
kike发布了新的文献求助10
23秒前
莫莫发布了新的文献求助10
23秒前
23秒前
24秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3914720
求助须知:如何正确求助?哪些是违规求助? 3460058
关于积分的说明 10909325
捐赠科研通 3186721
什么是DOI,文献DOI怎么找? 1761570
邀请新用户注册赠送积分活动 852201
科研通“疑难数据库(出版商)”最低求助积分说明 793213