清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Mining whole-lung information by artificial intelligence for predicting EGFR genotype and targeted therapy response in lung cancer: a multicohort study.

肺癌 医学 肿瘤科 内科学 基因型 人口 表皮生长因子受体 癌症 前瞻性队列研究 队列
作者
Shuo Wang,He Yu,Yuncui Gan,Zhangjie Wu,Encheng Li,Xiaohu Li,Jingxue Cao,Yongbei Zhu,Liusu Wang,Hui Deng,Mei Xie,Yuanyong Wang,Xidong Ma,Dan Liu,Bojiang Chen,Panwen Tian,Zhixin Qiu,Jinghong Xian,Jing Ren,Kun Wang,Wei Wei,Fei Xie,Zhenhui Li,Qi Wang,Xinying Xue,Zaiyi Liu,Jingyun Shi,Weimin Li,Jie Tian
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (5): e309-e319
标识
DOI:10.1016/s2589-7500(22)00024-3
摘要

Epidermal growth factor receptor (EGFR) genotype is crucial for treatment decision making in lung cancer, but it can be affected by tumour heterogeneity and invasive biopsy during gene sequencing. Importantly, not all patients with an EGFR mutation have good prognosis with EGFR-tyrosine kinase inhibitors (TKIs), indicating the necessity of stratifying for EGFR-mutant genotype. In this study, we proposed a fully automated artificial intelligence system (FAIS) that mines whole-lung information from CT images to predict EGFR genotype and prognosis with EGFR-TKI treatment.We included 18 232 patients with lung cancer with CT imaging and EGFR gene sequencing from nine cohorts in China and the USA, including a prospective cohort in an Asian population (n=891) and The Cancer Imaging Archive cohort in a White population. These cohorts were divided into thick CT group and thin CT group. The FAIS was built for predicting EGFR genotype and progression-free survival of patients receiving EGFR-TKIs, and it was evaluated by area under the curve (AUC) and Kaplan-Meier analysis. We further built two tumour-based deep learning models as comparison with the FAIS, and we explored the value of combining FAIS and clinical factors (the FAIS-C model). Additionally, we included 891 patients with 56-panel next-generation sequencing and 87 patients with RNA sequencing data to explore the biological mechanisms of FAIS.FAIS achieved AUCs ranging from 0·748 to 0·813 in the six retrospective and prospective testing cohorts, outperforming the commonly used tumour-based deep learning model. Genotype predicted by the FAIS-C model was significantly associated with prognosis to EGFR-TKIs treatment (log-rank p<0·05), an important complement to gene sequencing. Moreover, we found 29 prognostic deep learning features in FAIS that were able to identify patients with an EGFR mutation at high risk of TKI resistance. These features showed strong associations with multiple genotypes (p<0·05, t test or Wilcoxon test) and gene pathways linked to drug resistance and cancer progression mechanisms.FAIS provides a non-invasive method to detect EGFR genotype and identify patients with an EGFR mutation at high risk of TKI resistance. The superior performance of FAIS over tumour-based deep learning methods suggests that genotype and prognostic information could be obtained from the whole lung instead of only tumour tissues.National Natural Science Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔的柠檬完成签到 ,获得积分10
7秒前
CDQ完成签到,获得积分10
9秒前
12秒前
研友_nvGy2Z发布了新的文献求助10
18秒前
huiluowork完成签到 ,获得积分10
19秒前
车剑锋完成签到,获得积分10
21秒前
sailingluwl完成签到,获得积分10
31秒前
不安溪灵完成签到,获得积分10
42秒前
科研通AI5应助zangzyn采纳,获得10
48秒前
务实鞅完成签到 ,获得积分10
1分钟前
drtianyunhong完成签到,获得积分10
1分钟前
飞飞飞发布了新的文献求助10
1分钟前
冻结完成签到 ,获得积分10
1分钟前
2分钟前
嘉子完成签到 ,获得积分10
2分钟前
彩色凡英发布了新的文献求助10
2分钟前
科研通AI5应助繁觅采纳,获得30
2分钟前
彩色凡英完成签到,获得积分10
2分钟前
2分钟前
繁觅发布了新的文献求助30
2分钟前
Wang完成签到 ,获得积分20
2分钟前
研究新人完成签到,获得积分10
2分钟前
苒苒完成签到,获得积分10
3分钟前
莉莉完成签到 ,获得积分10
3分钟前
CHEN完成签到 ,获得积分10
3分钟前
ding应助MoonByMoon采纳,获得10
3分钟前
菘蓝泽蓼完成签到,获得积分10
3分钟前
雨天完成签到,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
xixi很困完成签到 ,获得积分10
3分钟前
Lexi完成签到,获得积分10
4分钟前
淡然以柳完成签到 ,获得积分10
4分钟前
重要手机完成签到 ,获得积分10
4分钟前
4分钟前
铜豌豆完成签到 ,获得积分10
4分钟前
江三村完成签到 ,获得积分10
4分钟前
Noah完成签到 ,获得积分0
5分钟前
请叫我小冰完成签到,获得积分10
5分钟前
慧慧34完成签到 ,获得积分10
5分钟前
小树叶完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4718867
求助须知:如何正确求助?哪些是违规求助? 4080021
关于积分的说明 12616491
捐赠科研通 3784192
什么是DOI,文献DOI怎么找? 2090413
邀请新用户注册赠送积分活动 1116375
科研通“疑难数据库(出版商)”最低求助积分说明 993495