亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mining whole-lung information by artificial intelligence for predicting EGFR genotype and targeted therapy response in lung cancer: a multicohort study.

肺癌 医学 肿瘤科 内科学 基因型 人口 表皮生长因子受体 癌症 前瞻性队列研究 队列
作者
Shuo Wang,He Yu,Yuncui Gan,Zhangjie Wu,Encheng Li,Xiaohu Li,Jingxue Cao,Yongbei Zhu,Liusu Wang,Hui Deng,Mei Xie,Yuanyong Wang,Xidong Ma,Dan Liu,Bojiang Chen,Panwen Tian,Zhixin Qiu,Jinghong Xian,Jing Ren,Kun Wang,Wei Wei,Fei Xie,Zhenhui Li,Qi Wang,Xinying Xue,Zaiyi Liu,Jingyun Shi,Weimin Li,Jie Tian
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (5): e309-e319
标识
DOI:10.1016/s2589-7500(22)00024-3
摘要

Epidermal growth factor receptor (EGFR) genotype is crucial for treatment decision making in lung cancer, but it can be affected by tumour heterogeneity and invasive biopsy during gene sequencing. Importantly, not all patients with an EGFR mutation have good prognosis with EGFR-tyrosine kinase inhibitors (TKIs), indicating the necessity of stratifying for EGFR-mutant genotype. In this study, we proposed a fully automated artificial intelligence system (FAIS) that mines whole-lung information from CT images to predict EGFR genotype and prognosis with EGFR-TKI treatment.We included 18 232 patients with lung cancer with CT imaging and EGFR gene sequencing from nine cohorts in China and the USA, including a prospective cohort in an Asian population (n=891) and The Cancer Imaging Archive cohort in a White population. These cohorts were divided into thick CT group and thin CT group. The FAIS was built for predicting EGFR genotype and progression-free survival of patients receiving EGFR-TKIs, and it was evaluated by area under the curve (AUC) and Kaplan-Meier analysis. We further built two tumour-based deep learning models as comparison with the FAIS, and we explored the value of combining FAIS and clinical factors (the FAIS-C model). Additionally, we included 891 patients with 56-panel next-generation sequencing and 87 patients with RNA sequencing data to explore the biological mechanisms of FAIS.FAIS achieved AUCs ranging from 0·748 to 0·813 in the six retrospective and prospective testing cohorts, outperforming the commonly used tumour-based deep learning model. Genotype predicted by the FAIS-C model was significantly associated with prognosis to EGFR-TKIs treatment (log-rank p<0·05), an important complement to gene sequencing. Moreover, we found 29 prognostic deep learning features in FAIS that were able to identify patients with an EGFR mutation at high risk of TKI resistance. These features showed strong associations with multiple genotypes (p<0·05, t test or Wilcoxon test) and gene pathways linked to drug resistance and cancer progression mechanisms.FAIS provides a non-invasive method to detect EGFR genotype and identify patients with an EGFR mutation at high risk of TKI resistance. The superior performance of FAIS over tumour-based deep learning methods suggests that genotype and prognostic information could be obtained from the whole lung instead of only tumour tissues.National Natural Science Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lll发布了新的文献求助10
刚刚
情怀应助苑阿宇采纳,获得10
47秒前
49秒前
bruna发布了新的文献求助10
50秒前
59秒前
苑阿宇发布了新的文献求助10
1分钟前
ZWTH完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
1分钟前
LZhao01发布了新的文献求助10
1分钟前
小马甲应助LZhao01采纳,获得10
1分钟前
Panda2022发布了新的文献求助30
2分钟前
3分钟前
LZhao01发布了新的文献求助10
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
天空之城发布了新的文献求助30
3分钟前
40873完成签到,获得积分10
3分钟前
3分钟前
123456发布了新的文献求助10
3分钟前
斯文败类应助龚幻梦采纳,获得10
3分钟前
龚幻梦完成签到,获得积分10
3分钟前
3分钟前
龚幻梦发布了新的文献求助10
3分钟前
Hello应助天空之城采纳,获得10
4分钟前
Hello应助龚幻梦采纳,获得10
4分钟前
4分钟前
guoguo完成签到 ,获得积分10
4分钟前
Jinny完成签到,获得积分10
5分钟前
5分钟前
back you up应助ALITTLE采纳,获得100
5分钟前
zsmj23完成签到 ,获得积分0
6分钟前
傲娇的曼香完成签到,获得积分10
6分钟前
6分钟前
Ricardo完成签到 ,获得积分10
6分钟前
Dannnn发布了新的文献求助10
6分钟前
广东第一深情完成签到,获得积分10
6分钟前
充电宝应助科研通管家采纳,获得10
7分钟前
7分钟前
狮子沟核聚变骡子完成签到 ,获得积分10
7分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777609
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212752
捐赠科研通 3038316
什么是DOI,文献DOI怎么找? 1667298
邀请新用户注册赠送积分活动 798103
科研通“疑难数据库(出版商)”最低求助积分说明 758215