Deep Learning Algorithm for Fully Automated Detection of Small (≤4 cm) Renal Cell Carcinoma in Contrast-Enhanced Computed Tomography Using a Multicenter Database

分割 肾细胞癌 医学 人工智能 对比度(视觉) 放射科 无症状的 计算机科学 算法 核医学 数据库
作者
Naoki Toda,Masahiro Hashimoto,Yuki Arita,Hasnine Haque,Hirotaka Akita,Toshiaki Akashi,Hideo Gobara,Akihiro Nishie,Masahiro Yakami,Atsushi Nakamoto,Takeyuki Watadani,Mototsugu Oya,Masahiro Jinzaki
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:Publish Ahead of Print
标识
DOI:10.1097/rli.0000000000000842
摘要

Renal cell carcinoma (RCC) is often found incidentally in asymptomatic individuals undergoing abdominal computed tomography (CT) examinations. The purpose of our study is to develop a deep learning-based algorithm for fully automated detection of small (≤4 cm) RCCs in contrast-enhanced CT images using a multicenter database and to evaluate its performance.For the algorithmic detection of RCC, we retrospectively selected contrast-enhanced CT images of patients with histologically confirmed single RCC with a tumor diameter of 4 cm or less between January 2005 and May 2020 from 7 centers in the Japan Medical Image Database. A total of 453 patients from 6 centers were selected as dataset A, and 132 patients from 1 center were selected as dataset B. Dataset A was used for training and internal validation. Dataset B was used only for external validation. Nephrogenic phase images of multiphase CT or single-phase postcontrast CT images were used. Our algorithm consisted of 2-step segmentation models, kidney segmentation and tumor segmentation. For internal validation with dataset A, 10-fold cross-validation was applied. For external validation, the models trained with dataset A were tested on dataset B. The detection performance of the models was evaluated using accuracy, sensitivity, specificity, and the area under the curve (AUC).The mean ± SD diameters of RCCs in dataset A and dataset B were 2.67 ± 0.77 cm and 2.64 ± 0.78 cm, respectively. Our algorithm yielded an accuracy, sensitivity, and specificity of 88.3%, 84.3%, and 92.3%, respectively, with dataset A and 87.5%, 84.8%, and 90.2%, respectively, with dataset B. The AUC of the algorithm with dataset A and dataset B was 0.930 and 0.933, respectively.The proposed deep learning-based algorithm achieved high accuracy, sensitivity, specificity, and AUC for the detection of small RCCs with both internal and external validations, suggesting that this algorithm could contribute to the early detection of small RCCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
songshu发布了新的文献求助10
1秒前
芝士吐司发布了新的文献求助10
1秒前
一一发布了新的文献求助10
2秒前
我是老大应助狂野夜绿采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
彭于晏应助香蕉静芙采纳,获得10
5秒前
任性雪糕完成签到 ,获得积分10
5秒前
5秒前
十四完成签到,获得积分10
6秒前
充电宝应助飞快的诗槐采纳,获得10
6秒前
7秒前
7秒前
爆米花应助小易采纳,获得10
7秒前
8秒前
哈哈发布了新的文献求助10
9秒前
好地方发布了新的文献求助10
9秒前
Simmer发布了新的文献求助10
9秒前
举头望sunshine完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
科研通AI5应助己见采纳,获得10
11秒前
11秒前
xinyuxie应助胖鱼吊灯采纳,获得10
11秒前
11秒前
sssss发布了新的文献求助30
13秒前
13秒前
lux5607完成签到,获得积分10
13秒前
金振龙完成签到,获得积分10
13秒前
科研通AI6应助zz采纳,获得50
14秒前
14秒前
14秒前
稗子发布了新的文献求助10
14秒前
14秒前
14秒前
香蕉黑米发布了新的文献求助10
15秒前
李顺杰发布了新的文献求助10
17秒前
研友_VZG7GZ应助一二采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4676421
求助须知:如何正确求助?哪些是违规求助? 4054144
关于积分的说明 12536954
捐赠科研通 3748276
什么是DOI,文献DOI怎么找? 2070316
邀请新用户注册赠送积分活动 1099307
科研通“疑难数据库(出版商)”最低求助积分说明 979027