Deep Learning Algorithm for Fully Automated Detection of Small (≤4 cm) Renal Cell Carcinoma in Contrast-Enhanced Computed Tomography Using a Multicenter Database

分割 肾细胞癌 医学 人工智能 对比度(视觉) 放射科 无症状的 计算机科学 算法 核医学 数据库
作者
Naoki Toda,Masahiro Hashimoto,Yuki Arita,Hasnine Haque,Hirotaka Akita,Toshiaki Akashi,Hideo Gobara,Akihiro Nishie,Masahiro Yakami,Atsushi Nakamoto,Takeyuki Watadani,Mototsugu Oya,Masahiro Jinzaki,Naoki Toda,Masahiro Hashimoto,Yuki Arita,Hasnine Haque,Hirotaka Akita,Takeyuki Watadani,Masahiro Jinzaki
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:57 (5): 327-333 被引量:23
标识
DOI:10.1097/rli.0000000000000842
摘要

Objectives Renal cell carcinoma (RCC) is often found incidentally in asymptomatic individuals undergoing abdominal computed tomography (CT) examinations. The purpose of our study is to develop a deep learning-based algorithm for fully automated detection of small (≤4 cm) RCCs in contrast-enhanced CT images using a multicenter database and to evaluate its performance. Materials and Methods For the algorithmic detection of RCC, we retrospectively selected contrast-enhanced CT images of patients with histologically confirmed single RCC with a tumor diameter of 4 cm or less between January 2005 and May 2020 from 7 centers in the Japan Medical Image Database. A total of 453 patients from 6 centers were selected as dataset A, and 132 patients from 1 center were selected as dataset B. Dataset A was used for training and internal validation. Dataset B was used only for external validation. Nephrogenic phase images of multiphase CT or single-phase postcontrast CT images were used. Our algorithm consisted of 2-step segmentation models, kidney segmentation and tumor segmentation. For internal validation with dataset A, 10-fold cross-validation was applied. For external validation, the models trained with dataset A were tested on dataset B. The detection performance of the models was evaluated using accuracy, sensitivity, specificity, and the area under the curve (AUC). Results The mean ± SD diameters of RCCs in dataset A and dataset B were 2.67 ± 0.77 cm and 2.64 ± 0.78 cm, respectively. Our algorithm yielded an accuracy, sensitivity, and specificity of 88.3%, 84.3%, and 92.3%, respectively, with dataset A and 87.5%, 84.8%, and 90.2%, respectively, with dataset B. The AUC of the algorithm with dataset A and dataset B was 0.930 and 0.933, respectively. Conclusions The proposed deep learning–based algorithm achieved high accuracy, sensitivity, specificity, and AUC for the detection of small RCCs with both internal and external validations, suggesting that this algorithm could contribute to the early detection of small RCCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
红豆完成签到,获得积分10
刚刚
youth0420发布了新的文献求助10
刚刚
科研通AI6应助热情蜗牛采纳,获得10
刚刚
科研通AI6应助mhpvv采纳,获得10
1秒前
2秒前
2秒前
科研通AI6应助shin0324采纳,获得10
2秒前
科研顺利发布了新的文献求助10
3秒前
听雨眠发布了新的文献求助10
3秒前
4秒前
AidenZhang完成签到,获得积分10
4秒前
慕青应助sine_mora采纳,获得10
5秒前
标致书易发布了新的文献求助10
5秒前
luoyukejing完成签到,获得积分10
5秒前
迷你的听荷应助韵掀采纳,获得10
5秒前
挽秋发布了新的文献求助20
5秒前
大力初珍发布了新的文献求助20
5秒前
5秒前
6秒前
ceeray23应助细腻戒指采纳,获得10
6秒前
高高尔蓉发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
小耗子发布了新的文献求助10
9秒前
wangx发布了新的文献求助10
9秒前
BK2008完成签到,获得积分10
9秒前
Ycun应助李东东采纳,获得80
9秒前
量子星尘发布了新的文献求助20
9秒前
吴帆发布了新的文献求助10
10秒前
彩色布条发布了新的文献求助10
11秒前
Glassy发布了新的文献求助20
11秒前
打打应助郭娅楠采纳,获得10
11秒前
τ涛完成签到,获得积分10
11秒前
12秒前
12秒前
今后应助LLX123采纳,获得10
12秒前
12秒前
子车茗应助浮生秋雨采纳,获得30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597953
求助须知:如何正确求助?哪些是违规求助? 4683487
关于积分的说明 14829823
捐赠科研通 4661930
什么是DOI,文献DOI怎么找? 2536962
邀请新用户注册赠送积分活动 1504544
关于科研通互助平台的介绍 1470244