Influence of liquid–vapor phase change on the self-propelled motion of droplets on wettability gradient surfaces

润湿 冷凝 蒸发 机械 微流控 相(物质) 表面力 材料科学 两相流 温度梯度 物理 纳米技术 化学物理 流量(数学) 热力学 量子力学
作者
Vitor Heitor Cardoso Cunha,Carlos A. Dorao,María Fernandino
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (12)
标识
DOI:10.1063/5.0239562
摘要

Self-propelled motion of sessile droplets on gradient surfaces is key to the advancement of microfluidic, nanofluidic, and surface fluidic technologies. Precise control over droplet dynamics, which often involves liquid–vapor phase transitions, is crucial for a variety of applications, including thermal management, self-cleaning surfaces, biochemical assays, and microreactors. Understanding how specific phase changes like condensation and evaporation affect droplet motion is essential for enhancing droplet manipulation and improving transport efficiency. We use the thermal Navier–Stokes–Korteweg equations to investigate the effects of condensation and evaporation on the motion and internal dynamics of droplets migrating across a surface with a linear surface energy profile. The study focuses on the early dynamics of self-propelled motion of a phase changing droplet at sub-micron scale before viscous forces are comparable with the gradient forces. Our results demonstrate that phase change significantly affects the self-propelled motion of droplets by reshaping interfacial mass flux distributions and internal flow dynamics. Condensation increases droplet volume and promotes extensive spreading toward regions of higher wettability, while evaporation reduces both volume and spreading. These changes in droplet shape and size directly affect the driving forces of motion, augmenting self-propulsion through condensation and suppressing it during evaporation. Additionally, each phase change type generates distinct internal flow patterns within the droplet, with condensation and evaporation exhibiting unique circulatory movements driven by localized phase changes near the contact lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCCCCL完成签到,获得积分10
刚刚
努力向上的小刘完成签到,获得积分10
1秒前
elysia完成签到,获得积分10
1秒前
xu发布了新的文献求助10
1秒前
1秒前
Hasghab应助英勇的蜡烛采纳,获得20
1秒前
wanci应助鱼叮叮采纳,获得30
1秒前
瑶啊瑶完成签到,获得积分10
2秒前
刘鸣宣发布了新的文献求助10
2秒前
2秒前
Kolalone完成签到,获得积分10
3秒前
3秒前
时年完成签到,获得积分10
3秒前
David发布了新的文献求助10
3秒前
阿宝完成签到,获得积分10
4秒前
司空天磊完成签到,获得积分10
4秒前
谷粱紫槐完成签到,获得积分10
5秒前
5秒前
111发布了新的文献求助10
5秒前
zhaosiqi完成签到 ,获得积分10
5秒前
英俊的铭应助小冬猫采纳,获得10
5秒前
牵墨完成签到,获得积分10
5秒前
coolru完成签到,获得积分10
5秒前
桶桶要好好学习完成签到,获得积分10
7秒前
slsdy完成签到,获得积分10
7秒前
Stella发布了新的文献求助10
7秒前
今后应助paul采纳,获得10
7秒前
肝不动的牛马完成签到,获得积分10
8秒前
沐沐ni发布了新的文献求助10
8秒前
HH完成签到,获得积分10
8秒前
方可完成签到,获得积分10
8秒前
9秒前
揽月发布了新的文献求助10
9秒前
记忆完成签到,获得积分10
9秒前
9秒前
10秒前
娃娃菜妮完成签到 ,获得积分10
10秒前
10秒前
陈一白完成签到,获得积分10
10秒前
无心的星月完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5080327
求助须知:如何正确求助?哪些是违规求助? 4298282
关于积分的说明 13390804
捐赠科研通 4121842
什么是DOI,文献DOI怎么找? 2257344
邀请新用户注册赠送积分活动 1261652
关于科研通互助平台的介绍 1195768