A Constrained Competitive Swarm Optimizer With an SVM-Based Surrogate Model for Feature Selection

计算机科学 特征选择 选择(遗传算法) 人工智能 进化计算 群体行为 支持向量机 机器学习 替代模型 模式识别(心理学) 数学优化 数学
作者
Bach Hoai Nguyen,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 2-16 被引量:8
标识
DOI:10.1109/tevc.2022.3197427
摘要

Feature selection (FS) is an important data preprocessing technique that selects a small subset of relevant features to improve learning performance. However, it is also challenging due to its large search space. Recently, a competitive swarm optimizer (CSO) has shown promising results in FS because of its potential global search ability. The main idea of CSO is to select two solutions randomly and then let the loser (worse fitness) learn from the winner (better fitness). Although such a search mechanism provides a high population diversity, it is at risk of generating unqualified solutions since the winner's quality is not guaranteed. In this work, we propose a constrained evolutionary mechanism for CSO, which verifies the quality of all the particles and lets the infeasible (unqualified) solutions learn from the feasible (qualified) ones. We also propose a novel local search and a size-change operator that guide the population to search for smaller feature subsets with similar or better classification performance. A surrogate model, based on support vector machines, is proposed to assist both local search and the size-change operator to explore a massive number of potential feature subsets without requiring excessive computational resource. Results on 24 real-world datasets show that the proposed algorithm can select smaller feature subsets with higher classification performance than state-of-the-art evolutionary computation (EC) and non-EC benchmark algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助下雨天下雨了采纳,获得30
1秒前
后陡门的夏天完成签到 ,获得积分10
1秒前
2秒前
百杜完成签到,获得积分20
2秒前
3秒前
长情藏今完成签到,获得积分10
3秒前
水怪啊发布了新的文献求助10
3秒前
wxr发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
yushisan完成签到 ,获得积分10
6秒前
6秒前
mogekkko发布了新的文献求助10
6秒前
6秒前
周shang发布了新的文献求助10
7秒前
百杜发布了新的文献求助10
7秒前
Yu发布了新的文献求助10
7秒前
十三完成签到,获得积分20
8秒前
8秒前
9秒前
9秒前
11秒前
11秒前
12秒前
周shang完成签到,获得积分10
12秒前
南京必吃完成签到,获得积分10
12秒前
13秒前
我是老大应助隐形的山晴采纳,获得10
14秒前
15秒前
合适曼香完成签到,获得积分10
15秒前
岱山完成签到,获得积分10
15秒前
芒果发布了新的文献求助10
15秒前
15秒前
16秒前
wxr完成签到 ,获得积分20
18秒前
18秒前
Rain发布了新的文献求助10
18秒前
19秒前
善学以致用应助合适曼香采纳,获得10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794881
求助须知:如何正确求助?哪些是违规求助? 3339777
关于积分的说明 10297235
捐赠科研通 3056415
什么是DOI,文献DOI怎么找? 1676988
邀请新用户注册赠送积分活动 805034
科研通“疑难数据库(出版商)”最低求助积分说明 762286