Robust Machine Learning Framework for Modeling the Compressive Strength of SFRC: Database Compilation, Predictive Analysis, and Empirical Verification

复杂度 计算机科学 机器学习 抗压强度 人工智能 实证研究 数学 材料科学 社会学 复合材料 统计 社会科学
作者
Yassir M. Abbas,M. Iqbal Khan
出处
期刊:Materials [MDPI AG]
卷期号:16 (22): 7178-7178 被引量:18
标识
DOI:10.3390/ma16227178
摘要

In recent years, the field of construction engineering has experienced a significant paradigm shift, embracing the integration of machine learning (ML) methodologies, with a particular emphasis on forecasting the characteristics of steel-fiber-reinforced concrete (SFRC). Despite the theoretical sophistication of existing models, persistent challenges remain—their opacity, lack of transparency, and real-world relevance for practitioners. To address this gap and advance our current understanding, this study employs the extra gradient (XG) boosting algorithm, crafting a comprehensive approach. Grounded in a meticulously curated database drawn from 43 seminal publications, encompassing 420 distinct records, this research focuses predominantly on three primary fiber types: crimped, hooked, and mil-cut. Complemented by hands-on experimentation involving 20 diverse SFRC mixtures, this empirical campaign is further illuminated through the strategic use of partial dependence plots (PDPs), revealing intricate relationships between input parameters and consequent compressive strength. A pivotal revelation of this research lies in the identification of optimal SFRC formulations, offering tangible insights for real-world applications. The developed ML model stands out not only for its sophistication but also its tangible accuracy, evidenced by exemplary performance against independent datasets, boasting a commendable mean target-prediction ratio of 99%. To bridge the theory–practice gap, we introduce a user-friendly digital interface, thoroughly designed to guide professionals in optimizing and accurately predicting the compressive strength of SFRC. This research thus contributes to the construction and civil engineering sectors by enhancing predictive capabilities and refining mix designs, fostering innovation, and addressing the evolving needs of the industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111chen完成签到 ,获得积分10
刚刚
luoluo完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
CodeCraft应助谭天龙采纳,获得10
3秒前
YYY发布了新的文献求助10
3秒前
Jerry完成签到,获得积分10
3秒前
3秒前
许敬翎完成签到,获得积分10
5秒前
李爱国应助小王采纳,获得10
5秒前
小小米完成签到,获得积分10
5秒前
6秒前
6秒前
xin发布了新的文献求助10
6秒前
7秒前
7秒前
2248388622完成签到,获得积分10
8秒前
Akim应助chenchenchen采纳,获得30
8秒前
畅快寄容发布了新的文献求助10
8秒前
sia关闭了sia文献求助
9秒前
9秒前
9秒前
天天快乐应助Missing采纳,获得10
10秒前
goodgoodstudy发布了新的文献求助10
10秒前
sarah完成签到,获得积分10
10秒前
科研通AI2S应助YYY采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
丢丢在吗发布了新的文献求助10
12秒前
12秒前
平淡远航发布了新的文献求助10
13秒前
14秒前
15秒前
LIU完成签到,获得积分10
17秒前
无极微光应助伍六七采纳,获得20
17秒前
18秒前
十三月的过客完成签到,获得积分10
18秒前
18秒前
天天快乐应助姜露萍采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532433
求助须知:如何正确求助?哪些是违规求助? 4621191
关于积分的说明 14577130
捐赠科研通 4561052
什么是DOI,文献DOI怎么找? 2499136
邀请新用户注册赠送积分活动 1479070
关于科研通互助平台的介绍 1450318