亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multilevel Temporal Convolutional Network Model with Wavelet Decomposition and Boruta Selection for Forecasting Monthly Precipitation

降水 异常(物理) 环境科学 气候学 小波 长江 选择(遗传算法) 计算机科学 气象学 人工智能 地质学 中国 地理 凝聚态物理 物理 考古
作者
Lizhi Tao,Xinguang He,Jiajia Li,Dong Yang
出处
期刊:Journal of Hydrometeorology [American Meteorological Society]
卷期号:24 (11): 1991-2005
标识
DOI:10.1175/jhm-d-22-0177.1
摘要

Abstract In this study, a multilevel temporal convolutional network (MTCN) model is proposed for 1-month-ahead forecasting of precipitation. In the MTCN model, à trous wavelet transform (ATWT) is first utilized to decompose the standardized monthly precipitation anomaly and its candidate predictors into their components with the different time scales. Then, at each of the time levels, a temporal convolutional network (TCN) model is built to forecast the precipitation anomaly component by combining with the Boruta selection algorithm (TCN-B) for identifying important model inputs from corresponding predictor components. Finally, the precipitation forecast is achieved by summing all the forecasted anomaly components and applying the inverse transform of the standardized monthly precipitation. The proposed MTCN is tested and compared to the TCN-B and TCN using monthly precipitation at 189 stations in the Yangtze River basin. The TCN-B is formed by coupling the TCN with the Boruta algorithm. The comparison results show that the TCN-B outperforms the TCN, and the MTCN has the best performance among the three models. Compared to the TCN, the MTCN provides a significant improvement for all stations, especially for the eastern stations of the basin. It is also shown that all three models perform better in spring and summer and have the weakest abilities in winter. The MTCN has a great improvement in predicting precipitation of all four seasons compared with the other two models. Additionally, all three models exhibit better prediction performance in the western region than in the eastern region of the basin, which is strongly related to the spatial distribution of precipitation variability.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
5秒前
小高发布了新的文献求助10
7秒前
Soya_FERRUM发布了新的文献求助10
8秒前
SSS发布了新的文献求助10
9秒前
14秒前
15秒前
Nathan发布了新的文献求助10
18秒前
18秒前
Hayat发布了新的文献求助30
20秒前
小花小宝和阿飞完成签到 ,获得积分10
21秒前
小陈发布了新的文献求助10
22秒前
派大星爱学习完成签到 ,获得积分10
28秒前
陆沉完成签到,获得积分10
31秒前
Cosmosurfer完成签到,获得积分10
31秒前
AZN完成签到,获得积分10
33秒前
konosuba完成签到,获得积分0
37秒前
坚定的又莲完成签到 ,获得积分10
39秒前
栖风完成签到,获得积分10
40秒前
Freeasy完成签到 ,获得积分10
45秒前
Soya_FERRUM完成签到,获得积分10
47秒前
绾妤完成签到 ,获得积分0
47秒前
腼腆的赛君完成签到,获得积分10
51秒前
ezekiet完成签到 ,获得积分10
52秒前
LYW完成签到 ,获得积分10
54秒前
zhuxd完成签到 ,获得积分10
56秒前
郑桂庆完成签到 ,获得积分10
59秒前
1分钟前
ZZ完成签到 ,获得积分10
1分钟前
hu完成签到,获得积分10
1分钟前
1分钟前
皮皮完成签到 ,获得积分10
1分钟前
坦率的乐蕊完成签到 ,获得积分10
1分钟前
Linson完成签到,获得积分10
1分钟前
Remon完成签到,获得积分10
1分钟前
ccc完成签到 ,获得积分10
1分钟前
和谐天川完成签到 ,获得积分10
1分钟前
惠香香的完成签到,获得积分10
1分钟前
uo完成签到 ,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
Modern Relationships 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5849623
求助须知:如何正确求助?哪些是违规求助? 6249880
关于积分的说明 15624553
捐赠科研通 4966011
什么是DOI,文献DOI怎么找? 2677722
邀请新用户注册赠送积分活动 1622025
关于科研通互助平台的介绍 1578094