Machine learning model for predicting physical activity related bleeding risk in Chinese boys with haemophilia A

血友病 布里氏评分 医学 判别式 体力活动 队列 物理疗法 内科学 外科 机器学习 计算机科学
作者
Di Ai,Chang Cui,Yongqiang Tang,Yan Wang,Ningning Zhang,Chenyang Zhang,Yingzi Zhen,Gang Li,Kun Huang,Guoqing Liu,Zhenping Chen,Wensheng Zhang,Runhui Wu
出处
期刊:Thrombosis Research [Elsevier BV]
卷期号:232: 43-53 被引量:1
标识
DOI:10.1016/j.thromres.2023.10.012
摘要

Physical activity is a crucial part of an active lifestyle for haemophiliac children. However, the fear of bleeds has been identified as barriers to participating physical activity for haemophiliac children even with prophylaxis. Lack of evidence and metrics driven by data is key problem.We aim to develop machine learning models based on clinical data with multiple potential factors considered to predict risk of physical activity bleeding for haemophilia children with prophylaxis.From this cohort study, we collected information on 98 haemophiliac children with adequate prophylaxis (trough FVIII:C level > 1 %). The involved potential predictor variables include demographic information, treatment information, physical activity, joint evaluation, and pharmacokinetic parameters, etc. We applied CoxPH, Random Survival Forests (RSF) and DeepSurv to construct prediction models for the risk of bleeding during physical activities. All three survival analysis models were internally and externally validated.A total of 98 patients were enrolled in this study. Their median age was 7.9 (5.5, 10.2) years. The CoxPH, RSF and DeepSurv models' discriminative and calibration abilities were all high, and the RSF model had the best performance (Internal validation: C-index, 0.7648 ± 0.0139; Brier Score, 0.1098 ± 0.0015; External validation: C-index, 0.7260 ± 0.0154; Brier Score, 0.0930 ± 0.0018). The prediction curves demonstrated that the developed RSF model can distinguish the risks well between bleeding and non-bleeding patients, as well as patients with different levels of physical activity. Meanwhile, the feature importance analysis confirmed that physical activity bleeding was deduced by comprehensive effects of various factors, and the importance of different factors on bleeding outcome is discrepant.This study revealed from the mechanism that it is necessary to incorporate multiple factors to accurately predict physical activity related bleeding risk. In clinical practice, the designed machine learning models can provide guidance for children with haemophilia A to positively participate in physical activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔樱桃应助shuang0116采纳,获得10
刚刚
江伊完成签到,获得积分10
刚刚
LIU完成签到 ,获得积分10
1秒前
sq发布了新的文献求助10
1秒前
平淡路人完成签到,获得积分10
1秒前
2秒前
ke完成签到,获得积分10
3秒前
zzznznnn完成签到,获得积分10
3秒前
hejinzhi发布了新的文献求助10
3秒前
孤独的电话完成签到,获得积分10
3秒前
桐桐应助木木采纳,获得10
4秒前
吴雪完成签到 ,获得积分10
4秒前
感动水杯完成签到 ,获得积分10
4秒前
可爱的函函应助江伊采纳,获得10
4秒前
领导范儿应助pcwang采纳,获得10
4秒前
陈昭琼发布了新的文献求助10
5秒前
das发布了新的文献求助10
5秒前
方勇飞完成签到,获得积分10
5秒前
科研通AI5应助怡米李采纳,获得10
5秒前
酷酷怀亦完成签到,获得积分10
5秒前
6秒前
老姚完成签到,获得积分10
6秒前
7秒前
薛诗棋发布了新的文献求助10
7秒前
professor_J完成签到,获得积分10
7秒前
7秒前
Nelson_Foo完成签到,获得积分10
7秒前
兴奋大开完成签到,获得积分10
8秒前
小马甲应助YF采纳,获得10
8秒前
XxxPessimist1c完成签到,获得积分10
8秒前
快乐难敌发布了新的文献求助30
9秒前
Alioth完成签到,获得积分10
9秒前
小胡要读博完成签到,获得积分10
9秒前
汉堡包应助H1998采纳,获得10
9秒前
11秒前
zoey发布了新的文献求助10
11秒前
有缘人完成签到,获得积分10
11秒前
sunshine完成签到,获得积分10
11秒前
搜集达人应助wanghe采纳,获得10
12秒前
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cardiopulmonary Bypass 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837940
求助须知:如何正确求助?哪些是违规求助? 3380118
关于积分的说明 10512448
捐赠科研通 3099689
什么是DOI,文献DOI怎么找? 1707202
邀请新用户注册赠送积分活动 821502
科研通“疑难数据库(出版商)”最低求助积分说明 772667