Many additively manufactured alloys exhibit higher strengths than compositionally identical alloys processed via conventional processing routes. However, this enhancement is not consistently observed in 7xxx series Aluminum alloys. These alloys present two complications when printed via Laser Powder Bed Fusion (LPBF): significant evaporation of strengthening elements from the melt pool and hot cracking during solidification. To address these issues, we introduce two modifications to the feedstock powder: (i) we increase the concentration of alloying constituents to counteract evaporation during printing, and (ii) we disperse TiC nanoparticles within the feedstock powder to promote heterogenous nucleation and limit grain growth, thus avoiding hot cracking and improving strength. Relationships between the evaporation of alloying elements and laser energy density are quantified experimentally using inductively-coupled-plasma mass-spectrometry and are well captured by simple analytical models. The microstructures in as-printed and heat-treated conditions are characterized using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Printing parameters have been optimized to attain minimum porosity, resulting in tensile strengths up to 650 MPa, which are in good agreement with predictions from classic models of strengthening mechanisms.