Graphene has excellent electronic mobility, high electrical conductivity, and strong thermal conductivity. These properties make it suitable for use in electronic devices, sensors, and energy storage systems. However, current methods for producing graphene films face several problems. They are often expensive, require specific substrates, and have low success rates during transfer. These issues limit the large-scale use of graphene films. In this study, we propose a low-cost method to prepare graphene films. The method uses a flexible polyimide (PI) mask. Laser etching is used to create specific patterns on the PI mask. Then, a printing technique is applied to deposit graphene films onto quartz substrates. Compared to traditional approaches, this method is cheaper, works with various substrates. We used systematic characterization to evaluate the method. The results show that it can produce uniform and high-quality graphene films. We also studied the effects of film thickness, substrate treatment, and vacuum annealing on film performance. Hydrophilic treatment improves the dispersion of the graphene slurry. This helps the film become more uniform and improves its adhesion to the substrate. Vacuum annealing removes some dopants and makes the film cleaner. This method provides a promising solution for low-cost and large-scale production of graphene films.