Privacy-Preserving Personalized Recommender Systems

推荐系统 计算机科学 互联网隐私 业务 计算机安全 万维网
作者
Xingyu Fu,Ningyuan Chen,Pin Gao,Yang Li
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/msom.2023.0271
摘要

Problem definition: Personalized product recommendations are crucial for online platforms but pose privacy risks. To address these concerns, we propose recommendation policies that adhere to differential privacy constraints. Methodology/results: We develop a theoretical model where the recommendation policy selects products based on consumers’ preference rankings, learned from personal data. Unlike conventional recommendation policies that primarily focus on prospering from meeting consumer satisfaction, our approach applies differential privacy to mitigate the risk of exposing personal information to man-in-the-middle attackers during the transmission of recommendations over communication networks, such as the Internet. As a result, this policy accounts for the tradeoff between personalization and privacy. Our analysis shows the optimal policy is a coarse-grained threshold policy, where products are randomly recommended with either high or low probability based on whether their preference rankings are above or below a certain threshold. We further explore the comparative statics of this threshold in an asymptotic regime with a large number of products, as is typical for online platforms. Moreover, we examine the economic implications of privacy protection. When product prices are exogenous, privacy protection reduces consumer surplus due to lower match values between consumers and recommended products. However, when retailers set prices endogenously, the impact on consumer surplus is nonmonotonic, reflecting a tradeoff between recommendation accuracy and price inflation. Managerial implications: Our findings offer insights for practitioners developing privacy-preserving personalized recommendation policies and provide regulators with a deeper understanding of the economic consequences of privacy protection in recommender systems. Funding: X. Fu acknowledges financial support from the University of New South Wales [Start-Up Grant, UNSW Business School Dean’s Research Fellowship]. N. Chen is supported by the Institute for Management & Innovation (IMI) Research Grant. P. Gao’s research is supported by the National Natural Science Foundation of China [Grants 72522026, 72201234 and 72192805], Collaborative Research Funding Hong Kong [Grant C6032-21G], and the Guangdong Provincial Key Laboratory of Mathematical Foundations for Artificial Intelligence [Grant 2023B1212010001]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0271 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wer完成签到,获得积分10
1秒前
1秒前
1秒前
yesir完成签到,获得积分10
2秒前
慢慢完成签到,获得积分10
2秒前
2秒前
烟花应助欣喜的香彤采纳,获得10
3秒前
3秒前
科研通AI2S应助lingyun4592采纳,获得10
3秒前
爆米花应助细心的小懒虫采纳,获得30
3秒前
3秒前
杜小鱼完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
萌新完成签到,获得积分10
6秒前
sx666发布了新的文献求助10
7秒前
nono完成签到,获得积分10
7秒前
NARUTO发布了新的文献求助10
7秒前
科研通AI6应助NGU采纳,获得10
7秒前
暖阳完成签到 ,获得积分10
7秒前
7秒前
酷波er应助单身的老三采纳,获得10
8秒前
8秒前
RSC发布了新的文献求助10
8秒前
wubo发布了新的文献求助20
8秒前
蛋堡洋芋发布了新的文献求助10
8秒前
小丹发布了新的文献求助10
9秒前
栗子完成签到,获得积分10
9秒前
雨林发布了新的文献求助10
10秒前
10秒前
gonna完成签到,获得积分10
10秒前
123完成签到,获得积分10
10秒前
坦率的大神完成签到 ,获得积分10
11秒前
申盼盼完成签到,获得积分20
11秒前
能干大树发布了新的文献求助10
11秒前
Hello应助present采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429316
求助须知:如何正确求助?哪些是违规求助? 4542743
关于积分的说明 14182778
捐赠科研通 4460720
什么是DOI,文献DOI怎么找? 2445823
邀请新用户注册赠送积分活动 1437000
关于科研通互助平台的介绍 1414164