Recognition of mulberry leaf diseases based on multi-scale residual network fusion SENet

残余物 比例(比率) 融合 生物 计算机科学 地理 地图学 算法 语言学 哲学
作者
Cheng P. Wen,Wei He,Wanling Wu,Xiang Liang,Jie Yang,Hongliang Nong,Zimian Lan
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (2): e0298700-e0298700
标识
DOI:10.1371/journal.pone.0298700
摘要

Silkworms are insects with important economic value, and mulberry leaves are the food of silkworms. The quality and quantity of mulberry leaves have a direct impact on cocooning. Mulberry leaves are often infected with various diseases during the growth process. Because of the subjectivity and time-consuming problems in artificial identification of mulberry leaf diseases. In this work, a multi-scale residual network fusion Squeeze-and-Excitation Networks (SENet) is proposed for mulberry leaf disease recognition. The mulberry leaf disease dataset was expanded by performing operations such as brightness enhancement, contrast enhancement, level flipping and adding Gaussian noise. Multi-scale convolution was used instead of the traditional single-scale convolution, allowing the network to be widened to obtain more feature information and avoiding the overfitting phenomenon caused by the network piling up too deep. SENet was introduced into the residual network to enhance the extraction of key feature information of the model, thus improving the recognition accuracy of the model. The experimental results showed that the method proposed in this paper can effectively improve the recognition performance of the model. The recognition accuracy reached 98.72%. The recall and F1 score were 98.73% and 98.72% respectively. Compared with some other models, this model has better recognition effect and can provide technical reference for intelligent mulberry leaf disease detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
irisjlj完成签到,获得积分10
1秒前
Jasper应助lulu采纳,获得10
1秒前
chai发布了新的文献求助10
2秒前
my完成签到,获得积分10
2秒前
尺八发布了新的文献求助10
2秒前
2秒前
乐观若烟完成签到 ,获得积分10
3秒前
欣慰小蕊完成签到,获得积分10
4秒前
白辞完成签到,获得积分10
4秒前
范欣雨完成签到,获得积分10
4秒前
4秒前
落后导师应助铁盐君采纳,获得10
4秒前
4秒前
桐桐应助粗粗布局采纳,获得10
5秒前
5秒前
皮卡丘完成签到 ,获得积分0
6秒前
年轻的吐司完成签到,获得积分10
6秒前
宋芝璇完成签到 ,获得积分10
7秒前
chai完成签到,获得积分10
7秒前
100完成签到,获得积分10
7秒前
王浩完成签到,获得积分10
8秒前
LL发布了新的文献求助10
8秒前
8秒前
无花果应助JHL采纳,获得10
8秒前
8秒前
雨田发布了新的文献求助10
8秒前
MOON完成签到,获得积分10
9秒前
9秒前
嗦了蜜发布了新的文献求助10
10秒前
英俊的铭应助成就小懒虫采纳,获得10
10秒前
NexusExplorer应助沉默夏真采纳,获得10
11秒前
www完成签到,获得积分10
11秒前
12秒前
Cat关闭了Cat文献求助
12秒前
kkkk完成签到,获得积分10
12秒前
飘逸的台灯完成签到,获得积分10
12秒前
13秒前
HEIKU应助cc采纳,获得10
13秒前
松子儿hhh完成签到,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785143
求助须知:如何正确求助?哪些是违规求助? 3330552
关于积分的说明 10247087
捐赠科研通 3045973
什么是DOI,文献DOI怎么找? 1671801
邀请新用户注册赠送积分活动 800834
科研通“疑难数据库(出版商)”最低求助积分说明 759691