A hierarchical consensus learning model for deep multi-view document clustering

计算机科学 人工智能 聚类分析 层次聚类 共识聚类 深度学习 机器学习 数据挖掘 模糊聚类 树冠聚类算法
作者
Ruina Bai,Ruizhang Huang,Yanping Chen,Yongbin Qin,Yong Xu,Qinghua Zheng
出处
期刊:Information Fusion [Elsevier BV]
卷期号:111: 102507-102507 被引量:2
标识
DOI:10.1016/j.inffus.2024.102507
摘要

Document clustering, a fundamental task in natural language processing, aims to divede large collections of documents into meaningful groups based on their similarities. Multi-view document clustering (MvDC) has emerged as a promising approach, leveraging information from diverse views to improve clustering accuracy and robustness. However, existing multi-view clustering methods suffer from two issues: (1) a lack of inter-relations across documents during consensus semantic learning; (2) the neglect of consensus structure mining in the multi-view document clustering. To address these issues, we propose a Hierarchical Consensus Learning model for Multi-view Document Clustering, termed as MvDC-HCL. Our model incorporates two key modules: The Data-oriented Consensus Semantic Learning (CSeL) module focuses on learning consensus semantics across various views by leveraging a hybrid contrastive consensus objective. The Task-oriented Consensus Structure Clustering (CStC) module employs a gated fusion network and clustering-driven structure contrastive learning to mine consensus structures effectively. Specifically, CSeL module constructs a contrastive consensus learning objective based on intra-sample and inter-sample relationships in multi-view data, aiming to optimize the view semantic representations obtained by the semantic learner. This facilitates consistent semantic learning across various views of the same sample and consistent relationship learning among samples from different views. Then, the learned view semantic representations are fed into the fusion network of CStC to obtain fused sample semantic representations. Together with the view semantic representations, sample-level and view-level clustering structures are derived for consensus structure mining. Additionally, CStC introduces clustering-driven objectives to guide consensus structure mining and achieve consistent clustering results. By hierarchically extracting implicit consensus semantics and structures within multi-view document data and tasks, MvDC-HCL significantly enhances clustering performance. Through comprehensive experiments, we demonstrate that proposed model can consistently perform better over the state-of-the-art methods. Our code is publicly available at https://github.com/m22453/MvDC_HCRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
adi完成签到,获得积分10
1秒前
核桃发布了新的文献求助10
3秒前
斯文败类应助王豪奇采纳,获得10
4秒前
Nathan完成签到,获得积分10
4秒前
火星上的面包碎完成签到,获得积分10
5秒前
斯文败类应助云海老采纳,获得10
5秒前
着急的雪冥完成签到,获得积分10
8秒前
加菲丰丰应助jingwenli21采纳,获得10
10秒前
灰灰12138完成签到,获得积分10
10秒前
Hoiden完成签到,获得积分10
14秒前
14秒前
15秒前
MchemG应助马上毕业采纳,获得10
18秒前
小二郎应助幸福五采纳,获得10
19秒前
19秒前
19秒前
顾矜应助飞宇采纳,获得10
19秒前
CodeCraft应助江湖浪子采纳,获得10
20秒前
Xinyu应助传统的鹏涛采纳,获得10
21秒前
Xinyu应助传统的鹏涛采纳,获得10
21秒前
SciGPT应助小文殊采纳,获得10
22秒前
遇见飞儿完成签到,获得积分10
23秒前
神勇千万完成签到,获得积分10
24秒前
25秒前
薛变霞发布了新的文献求助10
25秒前
不甜的唐发布了新的文献求助10
26秒前
缓慢洋葱完成签到,获得积分10
27秒前
林夕完成签到,获得积分10
27秒前
27秒前
29秒前
潇洒一曲完成签到,获得积分10
29秒前
Jasper应助缓慢晟睿采纳,获得10
29秒前
29秒前
神秘玩家完成签到 ,获得积分10
30秒前
科研通AI5应助香蕉雨安采纳,获得10
30秒前
30秒前
32秒前
飞宇发布了新的文献求助10
32秒前
32秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846673
求助须知:如何正确求助?哪些是违规求助? 3389223
关于积分的说明 10556297
捐赠科研通 3109602
什么是DOI,文献DOI怎么找? 1713842
邀请新用户注册赠送积分活动 824934
科研通“疑难数据库(出版商)”最低求助积分说明 775135