Depression is associated with higher sensitivity to social media rewards

灵敏度(控制系统) 社会化媒体 萧条(经济学) 心理学 社会心理学 计算机科学 经济 万维网 工程类 电子工程 宏观经济学
作者
Dan-Mircea Mirea,Judith N. Mildner,Seán Kelley,Claire M. Gillan,Erik C. Nook,Yael Niv
标识
DOI:10.31234/osf.io/4ynbc
摘要

The interaction between social media use and mental health is of great public health concern. Studies so far, largely employing self-reported measures of social media use, have produced inconclusive evidence regarding the impact of social media on mental health. Focusing on objective behavioral markers and the psychological mechanisms underlying how users interact with social media platforms could be key to greater insight on this topic. Here we use Twitter data to study how depression modulates a central behavioral process on social media: the response to the social rewards (e.g. likes, shares, views) users receive when they post. Reinforcement learning theory predicts that social media rewards will reinforce posting behavior, such that receiving more likes will lead to posting more frequently and spending more time on the platform. However, laboratory tasks often show blunted reinforcement learning in depression, suggesting a potential attenuation of the effects of social rewards on posting behavior. Across 3 datasets with varied measures of depression and data collection strategies (over 17 million tweets from 7744 users in total, including a pre-registered replication), we consistently found that depression was associated with a larger reinforcing effect of likes on posting on the next day. In other words, users with depression showed heightened sensitivity to social media rewards, in contrast to findings from laboratory-based tasks. These results identify a psychological mechanism that may link social media use to poor mental health, and underscore the importance of testing the generalizability of in-lab computational psychiatry findings to real-world environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Xxxxzzz发布了新的文献求助10
刚刚
嫁个养熊猫的完成签到 ,获得积分10
刚刚
都兰完成签到,获得积分10
1秒前
1秒前
经百招完成签到,获得积分10
1秒前
1秒前
kkkk发布了新的文献求助10
4秒前
5秒前
研友_8y2G0L发布了新的文献求助10
6秒前
WJ发布了新的文献求助10
6秒前
7秒前
SYLH应助贰什柒采纳,获得10
7秒前
8秒前
10秒前
雪天的阳发布了新的文献求助10
11秒前
shisujuan发布了新的文献求助10
11秒前
慕青应助付艳采纳,获得10
13秒前
orixero应助WJ采纳,获得10
16秒前
17秒前
18秒前
biopig应助贰什柒采纳,获得10
20秒前
21秒前
顺心凡之完成签到,获得积分10
21秒前
思源应助wang采纳,获得10
21秒前
火星上的天蓝完成签到,获得积分20
21秒前
爆米花应助极品小亮采纳,获得10
23秒前
路路有为完成签到 ,获得积分10
24秒前
冯岗发布了新的文献求助10
24秒前
spoon1026发布了新的文献求助10
25秒前
25秒前
悠然小灏发布了新的文献求助10
26秒前
都兰发布了新的文献求助10
27秒前
852应助给我个二硫碘化钾采纳,获得10
27秒前
乐观猕猴桃完成签到 ,获得积分10
27秒前
28秒前
28秒前
orixero应助轻松无剑采纳,获得10
29秒前
务实思烟完成签到,获得积分20
30秒前
科研通AI5应助john采纳,获得10
31秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
The phrasal lexicon 200
Solving Nonlinear Equations with Newton's Method 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836238
求助须知:如何正确求助?哪些是违规求助? 3378602
关于积分的说明 10505076
捐赠科研通 3098233
什么是DOI,文献DOI怎么找? 1706347
邀请新用户注册赠送积分活动 820967
科研通“疑难数据库(出版商)”最低求助积分说明 772349