已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The effectiveness of Gen AI in assisting students’ knowledge construction in humanities and social sciences courses: learning behaviour analysis

数字人文学科 数学教育 计算机科学 心理学 人文学科 万维网 哲学
作者
Shuai He,Yu Lu
出处
期刊:Interactive Learning Environments [Taylor & Francis]
卷期号:: 1-22
标识
DOI:10.1080/10494820.2024.2415444
摘要

Currently, generative AI has undergone rapid development. Numerous studies have attested to the benefits of Gen AI in programming, mathematics and other disciplines. However, since Gen AI mostly uses English as the intrinsic training parameter, it is more effective in facilitating the teaching of courses that use international common notation, but few scholars have researched the fitness of Gen AI-assisted teaching of humanities courses in Chinese-language environments. To address these gaps, this study examined the learning behaviours of 30 students using Gen AI to help them answer questions on economic law tests using the Lag Sequential Analysis. The results show that the following: (1) The use of Gen AI to aid learning in an economic law course did not significantly improve the cognitive level of academics from the perspective of knowledge construction. (2) According to the characteristics of students' behavioural paths via Gen AI-assisted learning, their behavioural patterns can be classified into autonomous and innovative, moderate, and lacking innovation. (3) Different learning modes when Gen AI-assisted teaching was used affected the final results, which were as follows: High-performing students favoured the autonomous and innovative pattern, medium-performing students favoured the moderate pattern, and low-performing students favoured the lacking innovation pattern.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
文艺丹琴发布了新的文献求助10
5秒前
科目三应助啊建采纳,获得10
7秒前
8秒前
kotea完成签到,获得积分10
10秒前
13秒前
魏建威发布了新的文献求助30
13秒前
13秒前
神勇映安完成签到 ,获得积分10
13秒前
13秒前
kjding完成签到,获得积分10
16秒前
edsenone发布了新的文献求助10
17秒前
邓双卯发布了新的文献求助10
17秒前
sswaggyc发布了新的文献求助10
19秒前
甜美姒发布了新的文献求助10
19秒前
Zz完成签到 ,获得积分10
21秒前
22秒前
sswaggyc完成签到,获得积分10
24秒前
坦率的跳跳糖完成签到 ,获得积分10
24秒前
felix发布了新的文献求助30
26秒前
美好斓应助小高采纳,获得30
28秒前
29秒前
ysergling完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
32秒前
32秒前
33秒前
时尚平文发布了新的文献求助10
34秒前
37秒前
38秒前
共享精神应助Geoer采纳,获得10
38秒前
可乐完成签到 ,获得积分10
39秒前
39秒前
大模型应助felix采纳,获得30
40秒前
冰魂应助科研通管家采纳,获得10
41秒前
41秒前
帮主哥哥应助科研通管家采纳,获得50
41秒前
隐形曼青应助科研通管家采纳,获得10
41秒前
冰魂应助科研通管家采纳,获得10
41秒前
41秒前
Happy7完成签到,获得积分10
41秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3889152
求助须知:如何正确求助?哪些是违规求助? 3431397
关于积分的说明 10773586
捐赠科研通 3156398
什么是DOI,文献DOI怎么找? 1743099
邀请新用户注册赠送积分活动 841514
科研通“疑难数据库(出版商)”最低求助积分说明 785966