Development and validation of machine learning models for predicting HER2-zero and HER2-low breast cancers

乳腺癌 人工智能 支持向量机 机器学习 人表皮生长因子受体2 医学 逻辑回归 交叉验证 Boosting(机器学习) 肿瘤科 接收机工作特性 内科学 癌症 计算机科学
作者
Xu‐Feng Huang,Lei Wu,Yu Liu,Zeyan Xu,Chunling Liu,Zaiyi Liu,Changhong Liang
出处
期刊:British Journal of Radiology [Wiley]
标识
DOI:10.1093/bjr/tqae124
摘要

Abstract Objectives To develop and validate machine learning models for human epidermal growth factor receptor 2 (HER2)-zero and HER2-low using MRI features pre–neoadjuvant therapy (NAT). Methods Five hundred and sixteen breast cancer patients post-NAT surgery were randomly divided into training (n = 362) and internal validation sets (n = 154) for model building and evaluation. MRI features (tumour diameter, enhancement type, background parenchymal enhancement, enhancement pattern, percentage of enhancement, signal enhancement ratio, breast oedema, and apparent diffusion coefficient) were reviewed. Logistic regression (LR), support vector machine (SVM), k-nearest neighbour (KNN), and extreme gradient boosting (XGBoost) models utilized MRI characteristics for HER2 status assessment in training and validation datasets. The best-performing model generated a HER2 score, which was subsequently correlated with pathological complete response (pCR) and disease-free survival (DFS). Results The XGBoost model outperformed LR, SVM, and KNN, achieving an area under the receiver operating characteristic curve (AUC) of 0.783 (95% CI, 0.733-0.833) and 0.787 (95% CI, 0.709-0.865) in the validation dataset. Its HER2 score for predicting pCR had an AUC of 0.708 in the training datasets and 0.695 in the validation dataset. Additionally, the low HER2 score was significantly associated with shorter DFS in the validation dataset (hazard ratio: 2.748, 95% CI, 1.016-7.432, P = .037). Conclusions The XGBoost model could help distinguish HER2-zero and HER2-low breast cancers and has the potential to predict pCR and prognosis in breast cancer patients undergoing NAT. Advances in knowledge HER2-low–expressing breast cancer can benefit from the HER2-targeted therapy. Prediction of HER2-low expression is crucial for appropriate management. MRI features offer a solution to this clinical issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助ZZB采纳,获得10
刚刚
PP发布了新的文献求助10
刚刚
1秒前
郁水桃完成签到,获得积分10
1秒前
agui发布了新的文献求助10
1秒前
2秒前
那地方发布了新的文献求助30
2秒前
3秒前
orixero应助zx2025采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
冰魂应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
钼yanghua应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
科研混子应助科研通管家采纳,获得30
5秒前
田様应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
未雨绸缪发布了新的文献求助10
7秒前
Akim应助小迪采纳,获得10
7秒前
坚定亦竹完成签到,获得积分10
7秒前
细腻的荟发布了新的文献求助10
8秒前
188发布了新的文献求助10
8秒前
葱葱不吃葱完成签到 ,获得积分10
8秒前
9秒前
9秒前
Lily完成签到,获得积分10
10秒前
甜橙完成签到 ,获得积分10
10秒前
10秒前
12秒前
bkagyin应助joji采纳,获得10
12秒前
科研通AI5应助活泼的乐枫采纳,获得10
12秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The CRISPR–Cas system in clinical strains of Acinetobacter baumannii: an in-silico analysis 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829090
求助须知:如何正确求助?哪些是违规求助? 3371770
关于积分的说明 10469066
捐赠科研通 3091450
什么是DOI,文献DOI怎么找? 1701121
邀请新用户注册赠送积分活动 818142
科研通“疑难数据库(出版商)”最低求助积分说明 770724