材料科学
陶瓷
电解质
阳极
锂(药物)
复合数
化学工程
电化学窗口
复合材料
丁二腈
快离子导体
钛酸锂
无机化学
锂离子电池
离子电导率
电池(电)
电极
化学
工程类
内分泌学
物理化学
物理
功率(物理)
医学
量子力学
作者
Xingwen Yu,Jianyu Li,Arumugam Manthiram
标识
DOI:10.1021/acsmaterialslett.9b00535
摘要
We present a multi-layer approach to design a laminated dual-polymer/polymer–ceramic composite electrolyte (LDPPCCE) for high-voltage all-solid-state lithium batteries. An anode friendly poly(ethylene oxide) (PEO) serves as a matrix to face the Li-metal anode. To enhance the room-temperature Li+-ion conductivity, succinonitrile (SN) is incorporated into the PEO. At the cathode side, an oxidation tolerant poly(acrylonitrile) (PAN) matrix is employed. To enhance the ionic conductivity and suppress lithium dendrite, NASICON-type lithium aluminum titanium phosphate (Li1+xAlxTi2–x(PO4)3, LATP) powder is integrated into the PAN. The PEO-SN dual-polymer and the PAN-LATP composite deliver matched ionic conductivity. Uniting the two electrolyte layers, the resulting elastic LDPPCCE exhibits an ionic conductivity of 1.31 × 10–4 S cm–1 at ambient temperature with an electrochemical stability window of 0–5 V. All-solid-state lithium cells, fabricated with the LDPPCCE electrolyte, high-capacity/high-voltage LiNi0.8Co0.1Mn0.1O2 cathode, and lithium–metal anode exhibit exceptional electrochemical performance with a long cycle life.
科研通智能强力驱动
Strongly Powered by AbleSci AI