An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints

分类 多目标优化 进化算法 数学优化 最优化问题 计算机科学 集合(抽象数据类型) 进化计算 算法 点(几何) 数学 几何学 程序设计语言
作者
Kalyanmoy Deb,Himanshu Jain
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:18 (4): 577-601 被引量:6273
标识
DOI:10.1109/tevc.2013.2281535
摘要

Having developed multiobjective optimization algorithms using evolutionary optimization methods and demonstrated their niche on various practical problems involving mostly two and three objectives, there is now a growing need for developing evolutionary multiobjective optimization (EMO) algorithms for handling many-objective (having four or more objectives) optimization problems. In this paper, we recognize a few recent efforts and discuss a number of viable directions for developing a potential EMO algorithm for solving many-objective optimization problems. Thereafter, we suggest a reference-point-based many-objective evolutionary algorithm following NSGA-II framework (we call it NSGA-III) that emphasizes population members that are nondominated, yet close to a set of supplied reference points. The proposed NSGA-III is applied to a number of many-objective test problems with three to 15 objectives and compared with two versions of a recently suggested EMO algorithm (MOEA/D). While each of the two MOEA/D methods works well on different classes of problems, the proposed NSGA-III is found to produce satisfactory results on all problems considered in this paper. This paper presents results on unconstrained problems, and the sequel paper considers constrained and other specialties in handling many-objective optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助汤婆婆采纳,获得10
刚刚
逆风起笔发布了新的文献求助10
刚刚
欢喜的棉花糖应助Moonpie采纳,获得10
刚刚
1秒前
小马甲应助花花飞啊飞采纳,获得20
1秒前
2秒前
AAA陈完成签到,获得积分10
2秒前
酷波er应助michael采纳,获得30
2秒前
量子星尘发布了新的文献求助10
2秒前
左左蕊发布了新的文献求助10
2秒前
REN完成签到,获得积分10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
柔弱芷珊完成签到,获得积分10
4秒前
打打应助ptalala采纳,获得10
4秒前
4秒前
是个哑巴发布了新的文献求助10
5秒前
无敌完成签到,获得积分10
5秒前
5秒前
5秒前
共享精神应助大胆十三采纳,获得10
6秒前
李爱国应助逆风起笔采纳,获得10
6秒前
拼搏的盼山完成签到,获得积分10
6秒前
充电宝应助LM采纳,获得10
6秒前
成就的元槐完成签到,获得积分10
6秒前
7秒前
谢谢大佬们完成签到,获得积分10
7秒前
xuxuux应助张昌辉采纳,获得30
7秒前
ZZZZZZZZ发布了新的文献求助10
8秒前
8秒前
JamesPei应助Fen3i采纳,获得10
9秒前
yanting发布了新的文献求助10
9秒前
9秒前
9秒前
小二郎应助77采纳,获得40
10秒前
10秒前
皎皎明月光关注了科研通微信公众号
11秒前
左左蕊完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667738
求助须知:如何正确求助?哪些是违规求助? 4887401
关于积分的说明 15121482
捐赠科研通 4826512
什么是DOI,文献DOI怎么找? 2584135
邀请新用户注册赠送积分活动 1538152
关于科研通互助平台的介绍 1496238