小提琴手
溶剂化
水溶液
溶解度
氧化还原
化学
电解质
解耦(概率)
亲核细胞
化学工程
材料科学
组合化学
隐溶剂化
极化连续介质模型
有机自由基电池
溶剂
降级(电信)
烷基化
放热反应
电化学
光化学
分子动力学
有机化学
作者
Xu Liu,Haiyan Yu,Xiaotong Deng,Jianyue He,Xuri Zhang,Junjie Huang,Zengrong Wang,Chenjing Liu,Xin Zhang,Gang He
标识
DOI:10.1002/anie.202522442
摘要
Abstract Conventional N ‐alkylated viologen electrolytes in neutral aqueous organic redox flow batteries (AORFBs) undergo irreversible nucleophilic S N 2 dealkylation degradation. Moreover, trial‐and‐error molecular design often fails to resolve the solubility–stability trade‐off in high‐concentration systems. Here we report a machine learning (ML) strategy using large language models (LLMs) trained on over 1300 AORFB studies to predict chiral viologens with ortho ‐dihydroxy motifs. This bonding network forms a dynamic, pH‐adaptive “solvation armor” that stabilizes the viologen structure. The R ‐/ S ‐ enantiomers (2.75/2.76 M) exhibit 1.66 times higher solubility versus RS ‐ racemate. Molecular simulations and in situ spectroscopy confirm that the dihydroxy groups protect reactive C─N bonds via a solvation structure (unrelated to chiral effect), enhancing stability to pH 11. The 1 M R 2+ / R +• redox couple sets a new record by achieving 99.42% capacity retention over 3652 cycles. The 1 M R ‐based AORFB shows 100% retention over 533 cycles, outperforming quaternary ammonium‐ ( [(NPr) 2 V]Cl 4 , 94.92%) and sulfonate‐modified viologen ( (SPr) 2 V) , 65.49%). Stable cycling across 0.1 ∼ 2.5 M demonstrates decoupling of degradation from concentration. This strategy is validated by 2.5 kg‐scale synthesis and Ah‐class stack testing (98.65% retention over 77 cycles), demonstrating industrial scalability. This work establishes a generalizable, ML‐enabled platform for electrolyte development, bridging molecular design and practical AORFB deployment.
科研通智能强力驱动
Strongly Powered by AbleSci AI