Efficient and Privacy-Preserving Truth Discovery in Mobile Crowd Sensing Systems

计算机科学 云计算 众包 移动设备 架空(工程) 计算机安全 万维网 操作系统
作者
Guowen Xu,Hongwei Li,Sen Liu,Mi Wen,Rongxing Lu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (4): 3854-3865 被引量:114
标识
DOI:10.1109/tvt.2019.2895834
摘要

With the advancement of mobile crowd sensing systems and vehicular ad hoc networks, the human-carried mobile devices (e.g., smartphones, smart navigators, and smart tablets) equipped with a variety of sensors (such as GPS, accelerometer, and compass) can work together to collect sensory data consequently delivered to the cloud for processing purposes, which supports a wide range of promising applications such as traffic monitoring, path planning, and real-time navigation. To ensure the authenticity and privacy of data, privacy-preserving truth discovery has attracted much attention since it can find reliable information among uneven quality of data collected from mobile users, while protecting both the confidentiality of users' raw sensory data and reliability. However, these methods always incur tremendous overhead and require all participants to keep online for interacting frequently with the cloud server. In this paper, we design an efficient and privacy-preserving truth discovery (EPTD) approach in mobile crowd sensing systems, which can tolerate users offline at any stage, while guaranteeing practical efficiency and accuracy under working process. More notably, our EPTD is the first solution to resolve the problem that users must be online all times during the truth discovery under a single cloud server setting. Moreover, we design a double-masking protocol to ensure the strong security of users' privacy even if the cloud server colludes with multiple users. Extensive experiments conducted on real-world mobile crowd sensing systems also demonstrate the high performance of our proposed scheme compared with existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博博大佬完成签到,获得积分10
刚刚
1秒前
徐徐应助lemon采纳,获得10
1秒前
hh完成签到,获得积分10
2秒前
3秒前
4秒前
不爱喝可乐完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
热心凡雁应助气味采纳,获得10
8秒前
Yyyyyy11发布了新的文献求助10
8秒前
爆米花应助大壮采纳,获得10
8秒前
as完成签到,获得积分10
9秒前
李婷婷发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
geather发布了新的文献求助10
11秒前
11秒前
11秒前
西出钰门发布了新的文献求助30
12秒前
太阳发布了新的文献求助10
12秒前
852应助火星上冬日采纳,获得10
12秒前
12秒前
cccui完成签到,获得积分10
13秒前
CipherSage应助wanwei采纳,获得10
14秒前
天天快乐应助gehao采纳,获得10
14秒前
ee完成签到,获得积分10
14秒前
小二郎应助Dnn采纳,获得10
14秒前
科研通AI5应助萝卜脚踝采纳,获得10
14秒前
ordin发布了新的文献求助10
15秒前
久久发布了新的文献求助10
15秒前
梵樱发布了新的文献求助20
15秒前
SciGPT应助无辜乘云采纳,获得10
16秒前
李健应助巫马寒梅采纳,获得10
16秒前
wes完成签到 ,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790196
求助须知:如何正确求助?哪些是违规求助? 3334887
关于积分的说明 10272750
捐赠科研通 3051350
什么是DOI,文献DOI怎么找? 1674626
邀请新用户注册赠送积分活动 802730
科研通“疑难数据库(出版商)”最低求助积分说明 760846