Local and global spatio-temporal entropy indices based on distance-ratios and co-occurrences distributions

范畴变量 熵(时间箭头) 聚类分析 乘法函数 数据挖掘 计算机科学 地理 数学 统计 人工智能 数学分析 物理 量子力学
作者
Didier Leibovici,Christophe Claramunt,Damien Le Guyader,David Brosset
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:28 (5): 1061-1084 被引量:64
标识
DOI:10.1080/13658816.2013.871284
摘要

When it comes to characterize the distribution of 'things' observed spatially and identified by their geometries and attributes, the Shannon entropy has been widely used in different domains such as ecology, regional sciences, epidemiology and image analysis. In particular, recent research has taken into account the spatial patterns derived from topological and metric properties in order to propose extensions to the measure of entropy. Based on two different approaches using either distance-ratios or co-occurrences of observed classes, the research developed in this paper introduces several new indices and explores their extensions to the spatio-temporal domains which are derived whilst investigating further their application as global and local indices. Using a multiplicative space-time integration approach either at a macro or micro-level, the approach leads to a series of spatio-temporal entropy indices including from combining co-occurrence and distances-ratios approaches. The framework developed is complementary to the spatio-temporal clustering problem, introducing a more spatial and spatio-temporal structuring perspective using several indices characterizing the distribution of several class instances in space and time. The whole approach is first illustrated on simulated data evolutions of three classes over seven time stamps. Preliminary results are discussed for a study of conflicting maritime activities in the Bay of Brest where the objective is to explore the spatio-temporal patterns exhibited by a categorical variable with six classes, each representing a conflict between two maritime activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WMT完成签到 ,获得积分10
刚刚
刚刚
刚刚
Camellia发布了新的文献求助10
刚刚
1874发布了新的文献求助10
刚刚
充电宝应助顺心羊采纳,获得10
1秒前
机灵的鸣凤完成签到,获得积分10
2秒前
研友_LOomaL发布了新的文献求助10
2秒前
开放的秋玲完成签到,获得积分10
3秒前
王瑶完成签到,获得积分20
3秒前
上官若男应助FUn采纳,获得10
3秒前
研友_Zlx3aZ完成签到,获得积分10
3秒前
小青椒应助魏伯安采纳,获得20
4秒前
4秒前
郜雨寒发布了新的文献求助10
4秒前
zu关注了科研通微信公众号
5秒前
mike5492完成签到,获得积分10
5秒前
RE完成签到 ,获得积分10
5秒前
灰色的乌完成签到,获得积分10
5秒前
ding应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
苏打水应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
clazer应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
王蝶完成签到 ,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得30
7秒前
wop111应助科研通管家采纳,获得20
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得150
7秒前
wanci应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得30
7秒前
科研通AI5应助科研通管家采纳,获得50
7秒前
酷波er应助科研通管家采纳,获得20
7秒前
缥缈无色完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Bacillus subtilis and Other Gram‐Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4853801
求助须知:如何正确求助?哪些是违规求助? 4151506
关于积分的说明 12862492
捐赠科研通 3900567
什么是DOI,文献DOI怎么找? 2143325
邀请新用户注册赠送积分活动 1163031
关于科研通互助平台的介绍 1063564