超收敛
数学
双线性插值
规范(哲学)
离散化
收敛速度
应用数学
插值(计算机图形学)
多边形网格
分数阶微积分
数学分析
几何学
有限元法
物理
计算机科学
法学
动画
工程类
频道(广播)
计算机图形学(图像)
电气工程
统计
热力学
政治学
作者
Yabing Wei,Yanmin Zhao,Hu Chen,Fenling Wang,Shujuan Lü
摘要
Abstract This paper analyzes a class of two‐dimensional (2‐D) time fractional reaction‐subdiffusion equations with variable coefficients. The high‐order L 2‐1 σ time‐stepping scheme on graded meshes is presented to deal with the weak singularity at the initial time t = 0, and the bilinear finite element method (FEM) on anisotropic meshes is used for spatial discretization. Using the modified discrete fractional Grönwall inequality, and combining the interpolation operator and the projection operator, the L 2 ‐norm error estimation and H 1 ‐norm superclose results are rigorously proved. The superconvergence result in the H 1 ‐norm is derived by applying the interpolation postprocessing technique. Finally, numerical examples are presented to verify the validation of our theoretical analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI