Automated classification of cells into multiple classes in epithelial tissue of oral squamous cell carcinoma using transfer learning and convolutional neural network

卷积神经网络 分级(工程) 人工智能 学习迁移 计算机科学 深度学习 残差神经网络 模式识别(心理学) 活检 机器学习 基底细胞 病理 医学 工程类 土木工程
作者
Navarun Das,Elima Hussain,Lipi B. Mahanta
出处
期刊:Neural Networks [Elsevier BV]
卷期号:128: 47-60 被引量:115
标识
DOI:10.1016/j.neunet.2020.05.003
摘要

The analysis of tissue of a tumor in the oral cavity is essential for the pathologist to ascertain its grading. Recent studies using biopsy images reveal computer-aided diagnosis for oral sub-mucous fibrosis (OSF) carried out using machine learning algorithms, but no research has yet been outlined for multi-class grading of oral squamous cell carcinoma (OSCC). Pertinently, with the advent of deep learning in digital imaging and computational aid in the diagnosis, multi-class classification of OSCC biopsy images can help in timely and effective prognosis and multi-modal treatment protocols for oral cancer patients, thus reducing the operational workload of pathologists while enhancing management of the disease. With this motivation, this study attempts to classify OSCC into its four classes as per the Broder's system of histological grading. The study is conducted on oral biopsy images applying two methods: (i) through the application of transfer learning using pre-trained deep convolutional neural network (CNN) wherein four candidate pre-trained models, namely Alexnet, VGG-16, VGG-19 and Resnet-50, were chosen to find the most suitable model for our classification problem, and (ii) by a proposed CNN model. Although the highest classification accuracy of 92.15% is achieved by Resnet-50 model, the experimental findings highlight that the proposed CNN model outperformed the transfer learning approaches displaying accuracy of 97.5%. It can be concluded that the proposed CNN based multi-class grading method of OSCC could be used for diagnosis of patients with OSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
AAA完成签到,获得积分20
2秒前
算不尽完成签到,获得积分20
3秒前
归尘完成签到,获得积分10
4秒前
4秒前
5秒前
orixero应助飒co采纳,获得10
5秒前
保持好心情完成签到 ,获得积分10
6秒前
breaking完成签到,获得积分10
6秒前
zhuxd发布了新的文献求助10
6秒前
无花果应助la采纳,获得10
6秒前
Dr_Zhang完成签到 ,获得积分10
8秒前
揽月yue应助breaking采纳,获得10
10秒前
musa完成签到,获得积分10
11秒前
大水牛姐姐完成签到,获得积分10
11秒前
12秒前
忧郁的猕猴桃完成签到,获得积分10
12秒前
研友_nqv2WZ完成签到,获得积分10
12秒前
Zoe完成签到,获得积分10
12秒前
lion完成签到 ,获得积分10
13秒前
自觉以冬完成签到 ,获得积分20
13秒前
Willow完成签到,获得积分10
13秒前
16秒前
SYLH应助musa采纳,获得10
16秒前
16秒前
Oliver完成签到 ,获得积分10
17秒前
优秀扬完成签到,获得积分10
17秒前
do0发布了新的文献求助10
18秒前
tata0215完成签到 ,获得积分10
18秒前
WANGs完成签到,获得积分10
19秒前
laber应助li采纳,获得30
20秒前
七月星河完成签到 ,获得积分10
21秒前
21秒前
taotao发布了新的文献求助10
22秒前
雾影觅光完成签到,获得积分10
22秒前
feilei完成签到,获得积分10
23秒前
113完成签到 ,获得积分10
23秒前
星星轨迹完成签到,获得积分10
24秒前
25秒前
新威宝贝完成签到,获得积分0
26秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801112
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330165
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807519
科研通“疑难数据库(出版商)”最低求助积分说明 763726