Residual Spectral–Spatial Attention Network for Hyperspectral Image Classification

高光谱成像 计算机科学 人工智能 过度拟合 模式识别(心理学) 像素 残余物 卷积神经网络 上下文图像分类 特征(语言学) 光谱带 空间分析 特征提取 深度学习 人工神经网络 遥感 图像(数学) 算法 语言学 哲学 地质学
作者
Minghao Zhu,Licheng Jiao,Fang Liu,Shuyuan Yang,Jianing Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (1): 449-462 被引量:390
标识
DOI:10.1109/tgrs.2020.2994057
摘要

In the last five years, deep learning has been introduced to tackle the hyperspectral image (HSI) classification and demonstrated good performance. In particular, the convolutional neural network (CNN)-based methods for HSI classification have made great progress. However, due to the high dimensionality of HSI and equal treatment of all bands, the performance of these methods is hampered by learning features from useless bands for classification. Moreover, for patchwise-based CNN models, equal treatment of spatial information from the pixel-centered neighborhood also hinders the performance of these methods. In this article, we propose an end-to-end residual spectral-spatial attention network (RSSAN) for HSI classification. The RSSAN takes raw 3-D cubes as input data without additional feature engineering. First, a spectral attention module is designed for spectral band selection from raw input data by emphasizing useful bands for classification and suppressing useless bands. Then, a spatial attention module is designed for the adaptive selection of spatial information by emphasizing pixels from the same class as the center pixel or those are useful for classification in the pixel-centered neighborhood and suppressing those from a different class or useless. Second, two attention modules are also used in the following CNN for adaptive feature refinement in spectral-spatial feature learning. Third, a sequential spectral-spatial attention module is embedded into a residual block to avoid overfitting and accelerate the training of the proposed model. Experimental studies demonstrate that the RSSAN achieved superior classification accuracy compared with the state of the art on three HSI data sets: Indian Pines (IN), University of Pavia (UP), and Kennedy Space Center (KSC).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456完成签到,获得积分10
刚刚
空白格完成签到 ,获得积分10
1秒前
852应助manman采纳,获得10
1秒前
Irene完成签到,获得积分10
2秒前
2秒前
ying发布了新的文献求助10
2秒前
2秒前
852应助柳煜城采纳,获得20
2秒前
万能图书馆应助0227Y采纳,获得30
3秒前
123完成签到,获得积分10
3秒前
3秒前
3秒前
科研通AI5应助黄花采纳,获得10
4秒前
爆米花应助kinoko采纳,获得10
5秒前
way完成签到,获得积分10
5秒前
5秒前
Chuanxin完成签到,获得积分10
5秒前
6秒前
科研通AI5应助liulk采纳,获得10
6秒前
6秒前
华仔应助hhhh_xt采纳,获得30
8秒前
吕坏完成签到,获得积分10
8秒前
8秒前
8秒前
无花果应助严不平采纳,获得10
9秒前
9秒前
枯荣完成签到,获得积分10
9秒前
lixiaofan发布了新的文献求助10
9秒前
10秒前
Zero完成签到,获得积分10
11秒前
CaiLing发布了新的文献求助10
11秒前
JamesPei应助Dr. LJ采纳,获得30
11秒前
11秒前
11秒前
DOZEN发布了新的文献求助10
11秒前
shaylie发布了新的文献求助50
12秒前
12秒前
欢迎欢迎完成签到,获得积分10
12秒前
宜醉宜游宜睡应助pp采纳,获得10
13秒前
Arno完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5022847
求助须知:如何正确求助?哪些是违规求助? 4260538
关于积分的说明 13278261
捐赠科研通 4066976
什么是DOI,文献DOI怎么找? 2224425
邀请新用户注册赠送积分活动 1233322
关于科研通互助平台的介绍 1157255