清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit

现场可编程门阵列 计算机硬件 计算机体系结构
作者
Tiankuang Zhou,Xing Lin,Jiamin Wu,Yitong Chen,Hao Xie,Yipeng Li,Jingtao Fan,Huaqiang Wu,Lu Fang,Qionghai Dai
出处
期刊:Nature Photonics [Springer Nature]
卷期号:15 (5): 367-373 被引量:543
标识
DOI:10.1038/s41566-021-00796-w
摘要

Application-specific optical processors have been considered disruptive technologies for modern computing that can fundamentally accelerate the development of artificial intelligence (AI) by offering substantially improved computing performance. Recent advancements in optical neural network architectures for neural information processing have been applied to perform various machine learning tasks. However, the existing architectures have limited complexity and performance; and each of them requires its own dedicated design that cannot be reconfigured to switch between different neural network models for different applications after deployment. Here, we propose an optoelectronic reconfigurable computing paradigm by constructing a diffractive processing unit (DPU) that can efficiently support different neural networks and achieve a high model complexity with millions of neurons. It allocates almost all of its computational operations optically and achieves extremely high speed of data modulation and large-scale network parameter updating by dynamically programming optical modulators and photodetectors. We demonstrated the reconfiguration of the DPU to implement various diffractive feedforward and recurrent neural networks and developed a novel adaptive training approach to circumvent the system imperfections. We applied the trained networks for high-speed classifying of handwritten digit images and human action videos over benchmark datasets, and the experimental results revealed a comparable classification accuracy to the electronic computing approaches. Furthermore, our prototype system built with off-the-shelf optoelectronic components surpasses the performance of state-of-the-art graphics processing units (GPUs) by several times on computing speed and more than an order of magnitude on system energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bono完成签到 ,获得积分10
2秒前
6秒前
11秒前
追寻的纸鹤完成签到 ,获得积分10
22秒前
cgs完成签到 ,获得积分10
23秒前
27秒前
huanghe完成签到,获得积分0
29秒前
JamesPei应助敏感的秋凌采纳,获得10
38秒前
Singularity完成签到,获得积分0
1分钟前
MAOMAO完成签到,获得积分10
1分钟前
Gary完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
qiongqiong发布了新的文献求助10
1分钟前
毛毛弟完成签到 ,获得积分10
1分钟前
庄海棠完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
gqw3505完成签到,获得积分10
2分钟前
酷酷的紫南完成签到 ,获得积分10
2分钟前
zs发布了新的文献求助30
2分钟前
活泼学生完成签到 ,获得积分10
2分钟前
智者雨人完成签到 ,获得积分10
2分钟前
ypp完成签到 ,获得积分10
3分钟前
刘丰完成签到 ,获得积分10
3分钟前
雪山飞龙完成签到,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
滕祥应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
zijingsy完成签到 ,获得积分10
3分钟前
lin123完成签到 ,获得积分10
3分钟前
菲子笑完成签到,获得积分10
3分钟前
王吉萍完成签到 ,获得积分10
3分钟前
Hazel发布了新的文献求助10
4分钟前
4分钟前
wave8013完成签到 ,获得积分10
4分钟前
菜鸟学习完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706666
求助须知:如何正确求助?哪些是违规求助? 5176277
关于积分的说明 15247184
捐赠科研通 4860108
什么是DOI,文献DOI怎么找? 2608386
邀请新用户注册赠送积分活动 1559298
关于科研通互助平台的介绍 1517073